Zebra Server - Administrators’ Guide
and Reference

Sebastian Hammer
Adam Dickmeiss

Heikki Levanto

Zebra Server - Administrators’ Guide and Reference
by Sebastian Hammer

by Adam Dickmeiss
by Heikki Levanto

Copyright © 1995-2002 by Index Data

The Zebra information server combines a versatile fielded/free-text search engine with a 2Z39.50 v3 front-end to
provide a powerful and flexible information management system. This document explains the procedure for
installing and configuring the system, managing data and providing Z39.50 services with the software.

This manual covers version 1.3.1 of Zebra.

Table of Contents

R L1 oo [1od 1o o OSSOSO 1
OVEBIVIBW. ..ttt ettt sttt ettt e bt ek se ke se b e ne s b et b e Rt e b e st st e bt se ekt se ek e st e b et et e e et enesbenenaebeneas 1
FRALUIES ...ttt ettt bttt e bt e s bt e s ae e s ate e b e e sa e e eae e e b e e Rt e eae e eabe e nRe e nhe e nnreene e re e nnee 1
LT U0 T S 2

B2 1153 = 1= 1T o S 3

G T 1103 0] = L AR 4

VAo [T T IS (= Vil o 7= o] - LR 6
RECOIT TYPES...c ettt ettt b et b e e b st bbb st b bt ne b e ettt nrene 6
The Zebra Configuration FilB...........coo s 6
(o Tor=1 1] To N = Tol 0] £ [PPSR 8
Indexing with no Record IDs (Simple INAEXiNg)........cccceererinereneieese e 9
Indexing With File RECOI IDS........cooi it e st ene 9
Indexing with General RECOI IDIS.... ..o s s 10
REQISIEN LOCALION......couiiieiieieeee ettt st b bbb e e et e st ebesbeseeseeeenea 12
Safe Updating - Using ShadOow REQISLEIS.........cooiriieiiirerie et 12

1S o3] T o S 12
How to Use Shadow RegiSter Files.........coco e 13

5. Running the Maintenance Interface (Zebraidx)..........cocoeoeiriiininencie e 15

B. THE Z39.50 SEIVEL......ci ittt sttt sttt sttt st st st be et st ek et ekt s be st st be e e be et 17
Running the Z39.50 SErver (ZEDIaSIV).......c.coii i see et saenaenens 17
Z39.50 Protocol Support and BENAVIQL...........ccceveieeeiie e 18

T TLE= 1 2= 4o TSSOSO 19
LY== T o PSR 19

REGUIAT EXPIESSIONS.c.eieiiieierieie ettt sttt s et 19

QUETY EXAMPIES. ..ottt et sttt 20
e (=ES=] 0] A PP P PRSPPI 21
o> o PSP 21
1T] PSSP 21
L0 o]SSPSR 22

7. The RECOII MOUEL......oeeieiiee ettt st et e nesbesee e e e e 23

LOCAI REPIESENTALION.cuieeviietiisieere ettt sttt b e e e b e b 23
Canonical INPUE FOMMAL.........coi ettt s b e b e s see e eneas 24

[T oTo] (o [l oo) AT 25

WATTANTS. ...ttt ettt e be s b e b e e s e e st e b e s besee s b et et et e aeebesbeseeseeneeneas 25

T 01U L 1 1= =T USSP 26
INternal REPIrESENTALIAN........ccuiiiiieete ettt st s b et sbe e eenea 28
TAGQEA EIBMENLS.... .ttt ettt bbb et b e sb e se e e 29
WAITANTS ...ttt ettt h e b b e bt e e e e st e he e aeehe e b e bene et eaeebesbesheee e e e e ens 29
Data EIEMENLS.....co.oiiieeeee e bbb e 29
Configuring YOUr Data MOUEL.........ccooieie et sttt 30
I AN S = Lo)Y = 30

The Configuration FlES........cooi et 30

The Abstract Syntax (.abs) FIleS.......ccoi e 31

The Attribute Set (Latt) FIlES.....cccoce e 33

The Tag Set ((tag) FIleS ... 34

The Variant Set (.Var) FIlES........cc e 35

The Element Set (.eSt) FIlES......c.oo e 36

The Schema Mapping (.Map) FIlES........ciriiriereee s 37

The MARC (ISO2709) Representation (.mar) FileS........ccceviiininniinineenecneees 38

Field Structure and Character SELS.........ocoiieirrinrirere e 38

EXCNANQE FOMMALS.......oouiiiiieee ettt st a e s b e e e e e aesbesbeseeseeneneas 40

F N I (o= LTSS 42
GNU General PUBIIC LICENSE.......cciiieirieitieee ettt 42

B. About Index Data and the Zebhra SEIVET ... 49

Chapter 1. Introduction

Overview

The Zebra (http://www.indexdata.dk/zebra/) server is a high-performance, general-purpose structured
text indexing and retrieval engine. It reads structured records in a variety of input formats (eg. email,
XML, MARC) and allows access to them through exact boolean search expressions and
relevance-ranked free-text queries.

Zebra supports large databases (more than ten gigabytes of data, tens of millions of records). It supports
incremental, safe database updates on live systems. You can access data stored in Zebra using a variety
of Index Data tools (eg. YAZ and PHP/YAZ) as well as commercial and freeware Z239.50 clients and
toolkits.

This document is an introduction to the Zebra system. It will tell you how to compile the software, and
how to prepare your first database. It also explains how the server can be configured to give you the
functionality that you need.

If you find the software interesting, you should visit the Zebra web site
(http://Iwww.indexdata.dk/zebra/), where you can join the mailing-list
(http://Iwww.indexdata.dk/mailman/listinfo/zebralist) by sending email to

Features

This is an overview of some of the most important features of the system.

« Supports large databases - files for indices, etc. can be automatically partitioned over multiple disks.

« Supports arbitrarily complex records - base input format is an SGML-like syntax which allows nested
(structured) data elements, as well as variant forms of data.

« Robust updating - records can be added and deleted without rebuilding the index from scratch. The
update procedure is tolerant to crashes or hard interrupts during register updating - registers can be
reconstructed following a crash. Registers can be safely updated even while users are accessing the
server.

« Supports random storage formats. A system of input filters driven by regular expressions allows you
to easily process most ASClI-based data formats. SGML, XML, 1ISO2709 (MARC), and raw text are
also supported.

« Supports boolean queries as well as relevance-ranking (free-text) searching. Right truncation and
masking in terms are supported, as well as full regular expressions.

- Can import the data into Zebras own storage, or just refer to external files (good for building indexes
of "live" collections).

- Supports multiple concrete syntaxes for record exchange (depending on the configuration): GRS-1,
SUTRS, XML, 1ISO2709 (*MARC). Records can be mapped between record syntaxes and schema on
the fly.

« Supports approximate matching in registers (ie. spelling mistakes, etc).

Chapter 1. Introduction

« Zebrais written in portable C, so it runs on most Unix-like systems as well as Windows NT - a binary
distribution for Windows NT is available.

Z39.50 protocol support:

- Protocol facilities: Init, Search, Retrieve, Delete, Browse and Sort.
« Piggy-backed presents are honored in the search-request.
- Named result sets are supported.

- Easily configured to support different application profiles, with tables for attribute sets, tag sets, and
abstract syntaxes. Additional tables control facilities such as element mappings to different schema
(eg., GILS-to-USMARC).

- Complex composition specifications using Espec-1 are partially supported (simple element requests
only).

- Element Set Names are defined using the Espec-1 capability of the system, and are given in
configuration files as simple element requests (and possibly variant requests).

Future Work

These are some of the plans that we have for the software in the near and far future, approximately
ordered after their relative importance.

« Improved support for XML in search and retrieval. Eventually, the goal is for Zebra to pull double
duty as a flexible information retrieval engine and high-performance XML repository.

« Access to search engine through SOAP/RPC API to allow the construction of applications without
requiring Z39.50 tools.

- Finalisation, documentation of the Zebra API. Consider exposing the API through SOAP as well
(allowing updates, database management).

- Improved free-text searching. We're first and foremost octet jockeys and we're actively looking for
organisations or people who'd like to contribute experience in relevance ranking and text searching.

Programmers thrive on user feedback. If you are interested in a facility that you don’t see mentioned
here, or if there’s something you think we could do better, please drop us a mail. If you think it’s all really
neat, you're welcome to drop us a line saying that, too. You'll find contact info at the end of this file.

Chapter 2. Installation

zebrasrv

zebraidx

An ANSI C compiler is required to compile the Zebra server systemce—works fine if your own
system doesn't provide an adequate compiler.

Unpack the distribution archive. Thenfigure shell script attempts to guess correct values for various
system-dependent variables used during compilation. It uses those values to create a 'Makefile’ in each
directory of Zebra.

To run the configure script type:

Jconfigure

The configure script attempts to use C compiler specified bg@&environment variable. If not setg
or GNU C will be used. ThEFLAGSenvironment variable holds options to be passed to the C compiler.
If you're using a Bourne-shell compatible shell you may pass something like this:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

The configure script takes a number of arguments, you can see them all with

Jconfigure --help

When configured build the software by typing:

make

If successful, two executables have been created in the sub-diréctexy.

The Z39.50 server and search engine.

The administrative indexing tool.

You can now use Zebra. If you wish to install it system-wide, type

make install
By default this will install the Zebra executablegisr/local/bin , and the standard configuration
files in/usr/local/share/zebra You can override this with theprefix ~ option to configure.

Chapter 3. Quick Start

FIXME - Start with the new improved example scripts that run without any configuration file changes!

In this section, we will test the system by indexing a small set of sample GILS records that are included
with the software distribution. Go to thest/gils subdirectory of the distribution archive. There you
will find a configuration file namedebra.cfg with the following contents:

Where are the YAZ tables located.
profilePath: ../../..lyaz/tab ../../tab

Files that describe the attribute sets supported.
attset: bib1.att
attset: gils.att

Now, edit the file and sgdrofilePath to the path of the YAZ profile tables (sub directaap of the
YAZ distribution archive).

The 48 test records are located in the sub direateryrds . To index these, type:

$../../index/zebraidx -t grs.sgml update records

In the command above the optian specified the record type — in this cags.sgm! . The word
update followed by a directory root updates all files below that directory node.

If your indexing command was successful, you are now ready to fire up a server. To start a server on port
2100, type:

$../../index/zebrasrv tcp:@:2100

The Zebra index that you have just created has a single database befagtd . The database contains
records structured according to the GILS profile, and the server will return records in either either
USMARC, GRS-1, or SUTRS depending on what your client asks for.

To test the server, you can use any Z39.50 client (1992 or later). For instance, you can use the demo
client that comes with YAZ: Just cd to thtent subdirectory of the YAZ distribution and type:

$.lyaz-client tcp:localhost:2100

When the client has connected, you can type:

Z> find surficial
Z> show 1

Chapter 3. Quick Start

The default retrieval syntax for the client is USMARC. To try other formats for the same record, try:

Z>format sutrs
Z>show 1
Z>format grs-1
Z>show 1
Z>format xml
Z>show 1
Z>elements B
Z>show 1

Note: You may notice that more fields are returned when your client requests SUTRS or GRS-1
records. When retrieving GILS records, this is normal - not all of the GILS data elements have
mappings in the USMARC record format.

If you've made it this far, there’s a good chance that you've got through the compilation OK.

Chapter 4. Administrating Zebra

Insert

Modify

Delete

Unlike many simpler retrieval systems, Zebra supports safe, incremental updates to an existing index.

Normally, when Zebra modifies the index it reads a number of records that you specify. Depending on
your specifications and on the contents of each record one the following events take place for each
record:

The record is indexed as if it never occurred before. Either the Zebra system doesn’t know how to
identify the record or Zebra can identify the record but didn't find it to be already indexed.

The record has already been indexed. In this case either the contents of the record or the location
(file) of the record indicates that it has been indexed before.

The record is deleted from the index. As in the update-case it must be able to identify the record.

Please note that in both the modify- and delete- case the Zebra indexer must be able to generate a unique
key that identifies the record in question (more on this below).

To administrate the Zebra retrieval system, you runztigaidx program. This program supports a
number of options which are preceded by a dash, and a few commands (not preceded by dash).

Both the Zebra administrative tool and the Z39.50 server share a set of index files and a global
configuration file. The name of the configuration file defaultsetera.cfy . The configuration file

includes specifications on how to index various kinds of records and where the other configuration files
are locatedzebrasrv andzebraidx mustbe run in the directory where the configuration file lives
unless you indicate the location of the configuration file by optéon

Record Types

Indexing is a per-record process, in which either insert/modify/delete will occur. Before a record is
indexed search keys are extracted from whatever might be the layout the original record (sgml,html,text,
etc..). The Zebra system currently supports two fundamental types of records: structured and simple text.
To specify a particular extraction process, use either the command line eptmmspecify a

recordType setting in the configuration file.

The Zebra Configuration File

The Zebra configuration file, read bgbraidx andzebrasrv defaults tazebra.cfy unless specified
by -c option.

You can edit the configuration file with a normal text editor. parameter names and values are separated by
colons in the file. Lines starting with a hash sign ére treated as comments.

Chapter 4. Administrating Zebra

If you manage different sets of records that share common characteristics, you can organize the
configuration settings for each type into "groups". Whebraidx is run and you wish to address a
given group you specify the group name with theoption. In this case settings that have the group
name as their prefix will be used lagbraidx . If no -g option is specified, the settings without prefix
are used.

In the configuration file, the group name is placed before the option name itself, separated by a dot (.).
For instance, to set the record type for grauplic togrs.sgml (the SGML-like format for structured
records) you would write:

public.recordType: grs.sgml

To set the default value of the record typedst write:

recordType: text

The available configuration settings are summarized below. They will be explained further in the
following sections.

FIXME - Didn’t Adam make something to have multiple databases in multiple dirs...

group.recordTypejhamé: type

Specifies how records with the file extensimameshould be handled by the indexer. This option
may also be specified as a command line optior).(Note that if you do not specify mame the
setting applies to all files. In general, the record type specifier consists of the elements (each
element separated by dofyndamental-typdile-read-typeand arguments. Currently, two
fundamental types exiggxt andgrs .

grouprecordld:record-id-spec
Specifies how the records are to be identified when updatedh&&ection calletlocating
Records
group.databasedatabase
Specifies the Z39.50 database name. FIXME - now we can have multiple databases in one server.
-H
group.storeKeyshoolean

Specifies whether key information should be saved for a given group of records. If you plan to
update/delete this type of records later this should be specified as 1; otherwise it should be 0
(default), to save register space. $lae Section callethdexing with File Record IDs

Chapter 4. Administrating Zebra

group.storeDataboolean
Specifies whether the records should be stored internally in the Zebra system files. If you want to
maintain the raw records yourself, this option should be false (0). If you want Zebra to take care of
the records for you, it should be true(1).

registerregister-location
Specifies the location of the various register files that Zebra uses to represent your databases. See
the Section calle®Register Location

shadowregister-location
Enables theafe updatdacility of Zebra, and tells the system where to place the required,
temporary files. Sethe Section calle@afe Updating - Using Shadow Registers

lockDir: directory

Directory in which various lock files are stored.

keyTmpDir:directory

Directory in which temporary files used during zebraidx’ update phase are stored.

setTmpDir:directory
Specifies the directory that the server uses for temporary result sets. If not sp@aifiedill be
used.

profilePathpath
Specifies a path of profile specification files. The path is composed of one or more directories
separated by colon. Similar to PATH for UNIX systems.

attset:filename

Specifies the filename(s) of attribute set files for use in searching. At least the Bib-1 set should be
loaded bibl.att). TheprofilePath setting is used to look for the specified files. S
Section called'he Attribute Set (.att) Fileim Chapter 7

memMax:size
Specifiessize of internal memory to use for the zebraidx program. The amount is given in
megabytes - default is 4 (4 MB).

root: dir

Specifies a directory base for Zebra. All relative paths given (in profilePath, register, shadow) are
based on this directory. This setting is useful if if you Zebra server is running in a different directory
from wherezebra.cfg is located.

Chapter 4. Administrating Zebra

Locating Records

The default behavior of the Zebra system is to reference the records from their original location, i.e.
where they were found when you rasbraidx . That is, when a client wishes to retrieve a record

following a search operation, the files are accessed from the place where you originally put them - if you
remove the files (without runningebraidx again, the client will receive a diagnostic message.

If your input files are not permanent - for example if you retrieve your records from an outside source, or
if they were temporarily mounted on a CD-ROM drive, you may want Zebra to make an internal copy of
them. To do this, you specify 1 (true) in tewreData setting. When the Z39.50 server retrieves the
records they will be read from the internal file structures of the system.

Indexing with no Record IDs (Simple Indexing)

If you have a set of records that are not expected to change over time you may can build your database
without record IDs. This indexing method uses less space than the other methods and is simple to use.

To use this method, you simply omit thecordid ~ entry for the group of files that you index. To add a

set of records you ussebraidx ~ with theupdate command. Thepdate command will always add all

of the records that it encounters to the index - whether they have already been indexed or not. If the set of
indexed files change, you should delete all of the index files, and build a new index from scratch.

Consider a system in which you have a group of text files caitadie . That group of records should
belong to a Z39.50 database caltegtbase . The followingzebra.cfg file will suffice:

profilePath: /usr/locallyaz
attset: bibl.att
simple.recordType: text
simple.database: textbase

Since the existing records in an index can not be addressed by their IDs, it is impossible to delete or
modify records when using this method.

Indexing with File Record IDs

If you have a set of files that regularly change over time: Old files are deleted, new ones are added, or
existing files are modified, you can benefit from usingftleslD indexing methodology. Examples of

this type of database might include an index of WWW resources, or a USENET news spool area. Briefly
speaking, the file key methodology uses the directory paths of the individual records as a unique
identifier for each record. To perform indexing of a directory with file keys, again, you specify the

top-level directory after thepdate command. The command will recursively traverse the directories

and compare each one with whatever have been indexed before in that same directory. If a file is new (not
in the previous version of the directory) it is inserted into the registers; if a file was already indexed and it
has been modified since the last update, the index is also modified; if a file has been removed since the
last visit, it is deleted from the index.

Chapter 4. Administrating Zebra

The resulting system is easy to administrate. To delete a record you simply have to delete the
corresponding file (say, with then command). And to add records you create new files (or directories

with files). For your changes to take effect in the register you mustebiraidx update with the

same directory root again. This mode of operation requires more disk space than simpler indexing
methods, but it makes it easier for you to keep the index in sync with a frequently changing set of data. If
you combine this system with tleafe updatdacility (see below), you never have to take your server
off-line for maintenance or register updating purposes.

To enable indexing with pathname IDs, you must spefiidy as the value ofecordld in the

configuration file. In addition, you should ssbreKeys to 1, since the Zebra indexer must save

additional information about the contents of each record in order to modify the indices correctly at a later
time.

FIXME - There must be a simpler way to do this with Adams string tags -H

For example, to update records of grasgold located belowdatal/records/ you should type:

$ zebraidx -g esdd update /datal/records

The corresponding configuration file includes:

esdd.recordld: file
esdd.recordType: grs.sgmil
esdd.storeKeys: 1

Note: You cannot start out with a group of records with simple indexing (no record IDs as in the
previous section) and then later enable file record Ids. Zebra must know from the first time that you
index the group that the files should be indexed with file record IDs.

You cannot explicitly delete records when using this method (usingdleéee command taebraidx
Instead you have to delete the files from the file system (or move them to a different location) and then
runzebraidx with theupdate command.

Indexing with General Record IDs

When using this method you construct an (almost) arbitrary, internal record key based on the contents of
the record itself and other system information. If you have a group of records that explicitly associates an
ID with each record, this method is convenient. For example, the record format may contain a title or a
ID-number - unigue within the group. In either case you specify the Z239.50 attribute set and use-attribute
location in which this information is stored, and the system looks at that field to determine the identity of
the record.

10

Chapter 4. Administrating Zebra

As before, the record ID is defined by theeordld setting in the configuration file. The value of the
record ID specification consists of one or more tokens separated by whitespace. The resulting ID is
represented in the index by concatenating the tokens and separating them by ASCII value (1).

There are three kinds of tokens:

Internal record info
The token refers to a key that is extracted from the record. The syntax of this tokeetis use) ,
wheresetis the attribute set nameseis the name or value of the attribute.
System variable
The system variables are preceded by
$

and immediately followed by the system variable name, which may one of

group
Group name.
database
Current database specified.
type

Record type.

Constant string

A string used as part of the ID — surrounded by single- or double quotes.

For instance, the sample GILS records that come with the Zebra distribution contain a unique ID in the

data tagged Control-ldentifier. The data is mapped to the Bib-1 use attribute Identifier-standard (code
1007). To use this field as a record id, specifip1,Identifier-standard) as the value of the

recordld in the configuration file. If you have other record types that uses the same field for a different
purpose, you might add the record type (or group or database name) to the record id of the gils records as

well, to prevent matches with other types of records. In this case the recordld might be set like this:

gils.recordld: $type (bibl,ldentifier-standard)

(seethe Section calle€onfiguring Your Data Modeh Chapter 7#or details of how the mapping
between elements of your records and searchable attributes is established).

As for the file record ID case described in the previous section, updating your system is simply a matter

of runningzebraidx with theupdate command. However, the update with general keys is

considerably slower than with file record IDs, since all files visited must be (re)read to discover their IDs.

11

Chapter 4. Administrating Zebra

As you might expect, when using the general record IDs method, you can only add or modify existing
records with thaipdate command. If you wish to delete records, you must usedélete command,
with a directory as a parameter. This will remove all records that match the files below that root directory.

Register Location

Normally, the index files that form dictionaries, inverted files, record info, etc., are stored in the directory
where you rureebraidx . If you wish to store these, possibly large, files somewhere else, you must add
theregister entry to thezebra.cfg file. Furthermore, the Zebra system allows its file structures to
span multiple file systems, which is useful for managing very large databases.

The value of theegister setting is a sequence of tokens. Each token takes the form:

dir :size .

Thedir specifies a directory in which index files will be stored andgtzespecifies the maximum size

of all files in that directory. The Zebra indexer system fills each directory in the order specified and use
the next specified directories as needed. Jikeis an integer followed by a qualifier codefor bytes,k

for kilobytes.Mfor megabytesG for gigabytes.

For instance, if you have allocated two disks for your register, and the first disk is mountétd and
has 2GB of free space and the second, mountedarhas 3.6 GB, you could put this entry in your
configuration file:

register: /d1:2G /d2:3600M

Note that Zebra does not verify that the amount of space specified is actually available on the directory
(file system) specified - it is your responsibility to ensure that enough space is available, and that other
applications do not attempt to use the free space. In a large production system, it is recommended that
you allocate one or more file system exclusively to the Zebra register files.

Safe Updating - Using Shadow Registers

Description

The Zebra server suppoupdatingof the index structures. That is, you can add, modify, or remove

records from databases managed by Zebra without rebuilding the entire index. Since this process
involves modifying structured files with various references between blocks of data in the files, the update
process is inherently sensitive to system crashes, or to process interruptions: Anything but a successfully
completed update process will leave the register files in an unknown state, and you will essentially have
no recourse but to re-index everything, or to restore the register files from a backup medium. Further,
while the update process is active, users cannot be allowed to access the system, as the contents of the
register files may change unpredictably.

12

Chapter 4. Administrating Zebra

You can solve these problems by enabling the shadow register system in Zebra. During the updating
procedurezebraidx will temporarily write changes to the involved files in a set of "shadow files",
without modifying the files that are accessed by the active server processes. If the update procedure is
interrupted by a system crash or a signal, you simply repeat the procedure - the register files have not
been changed or damaged, and the partially written shadow files are automatically deleted before the
new updating procedure commences.

At the end of the updating procedure (or in a separate operation, if you so desire), the system enters a
"commit mode". First, any active server processes are forced to access those blocks that have been
changed from the shadow files rather than from the main register files; the unmodified blocks are still
accessed at their normal location (the shadow files are not a complete copy of the register files - they only
contain those parts that have actually been modified). If the commit process is interrupted at any point
during the commit process, the server processes will continue to access the shadow files until you can
repeat the commit procedure and complete the writing of data to the main register files. You can perform
multiple update operations to the registers before you commit the changes to the system files, or you can
execute the commit operation at the end of each update operation. When the commit phase has
completed successfully, any running server processes are instructed to switch their operations to the new,
operational register, and the temporary shadow files are deleted.

How to Use Shadow Register Files

The first step is to allocate space on your system for the shadow files. You do this by addénigwa

entry to thezebra.cfg file. The syntax of thahadow entry is exactly the same as for ttegjister

entry (seghe Section calle®egister Location The location of the shadow area shoulddiféerentfrom

the location of the main register area (if you have specified one - remember that if you provide no
register setting, the default register area is the working directory of the server and indexing processes).

The following excerpt from aebra.cfg file shows one example of a setup that configures both the

main register location and the shadow file area. Note that two directories or partitions have been set aside
for the shadow file area. You can specify any number of directories for each of the file areas, but
remember that there should be no overlaps between the directories used for the main registers and the
shadow files, respectively.

register: /d1:500M

shadow: /scratch1:100M /scratch2:200M

When shadow files are enabled, an extra command is availablezittaglx command line. In order

to make changes to the system take effect for the users, you'll have to submit a "commit" command after
a (sequence of) update operation(s). You can ask the indexer to commit the changes immediately after
the update operation:

$ zebraidx update /d1/records update /d2/more-records commit

13

Chapter 4. Administrating Zebra

Or you can execute multiple updates before committing the changes:

$ zebraidx -g books update /dl/records update /d2/more-records
$ zebraidx -g fun update /d3/fun-records
$ zebraidx commit

If one of the update operations above had been interrupted, the commit operation on the last line would
fail: zebraidx will not let you commit changes that would destroy the running register. You'll have to
rerun all of the update operations since your last commit operation, before you can commit the new
changes.

Similarly, if the commit operation failsgebraidx will not let you start a new update operation before
you have successfully repeated the commit operation. The server processes will keep accessing the
shadow files rather than the (possibly damaged) blocks of the main register files until the commit
operation has successfully completed.

You should be aware that update operations may take slightly longer when the shadow register system is
enabled, since more file access operations are involved. Further, while the disk space required for the
shadow register data is modest for a small update operation, you may prefer to disable the system if you
are adding a very large number of records to an already very large database (we use tteedesnsl
modestvery loosely here, since every application will have a different perception of size). To update the
system without the use of the the shadow files, simplyztimaidx ~ with the-n option (note that you

do not have to execute ttemmitcommand ofebraidx when you temporarily disable the use of the
shadow registers in this fashion. Note also that, just as when the shadow registers are not enabled, server
processes will be barred from accessing the main register while the update procedure takes place.

14

Chapter 5. Running the Maintenance Interface
(zebraidx)

The following is a complete reference to the command line interface teethreidx application.

Syntax

$ zebraidx [options] command [directory] ...

Options:

-t type

-c config-file

-g group

-d database

-l file

-m mbytes

Update all files atype . Currently, the types supported aset andgrs .subtype .If no

subtype is provided for the GRS (General Record Structure) type, the canonical input format is
assumed (sethe Section calletlocal Representatioim Chapter J. Generally, it is probably
advisable to specify the record types in teera.cfy file (seethe Section calle@Record Typem
Chapter 4, to avoid confusion at subsequent updates.

Read the configuration fileonfig-file instead ofzebra.cfg

Update the files according to the group settinggyimup (seethe Section calledhe Zebra
Configuration Filein Chapter 4.

The records located should be associated with the databasedatabase for access through
the Z239.50 server.

Write log messages file instead oftderr

Usembytes of memory before flushing keys to background storage. This setting affects
performance when updating large databases.

Disable the use of shadow registers for this operationtfe&ection calle@afe Updating - Using
Shadow Registeiia Chapter 4.

Show analysis of the indexing process. The maintenance program works in a read-only mode and
doesn’t change the state of the index. This options is very useful when you wish to test a new profile.

15

Chapter 5. Running the Maintenance Interface (zebraidx)

Show Zebra version.

-v level

Set the log level téevel .level should be one afione, debug, andall .

Commands

updatedirectory
Update the register with the files containedlirectory . If no directory is provided, a list of
files is read fronstdin . SeeChapter 4

deletedirectory

Remove the records corresponding to the files found udidectory from the register.

commit

Write the changes resulting from the lagtlate commands to the register. This command is only
available if the use of shadow register files is enabledffse&ection calle®afe Updating - Using
Shadow Registelia Chapter 4.

16

Chapter 6. The Z39.50 Server

Running the Z39.50 Server (zebrasrv)

FIXME - We need to be consistent here, zebraidx had the options at the end, and lots of explaining text
before them. Same for zebrasvr! -H FIXME - At least we need a small intro, what is zebrasvr, and how it
can be run (inetd, nt service, stand-alone program, daemon...) -H

Syntax

zebrasrv [options] [listener-address ...]

Options

-aAPDU file

-c config-file

-l logfile

-v log-level

-uusername

Specify a file for dumping PDUs (for diagnostic purposes). The special name "-" sends output to
stderr

Read configuration information frogonfig-file . The default configuration igzebra.cfg

Don't fork on connection requests. This can be useful for symbolic-level debugging. The server can
only accept a single connection in this mode.

Use the Z39.50 protocol. Currently the only protocol supported. The option is retained for
historical reasons, and for future extensions.

Specify an output file for the diagnostic messages. The default is to write this information to
stderr

The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,all,none}.

Set user ID. Sets the real UID of the server process to that of the géemame . It's useful if
you aren’t comfortable with having the server run as root, but you need to start it as such to bind a
privileged port.

-w working-directory

Change working directory.

17

Chapter 6. The Z39.50 Server

Run under the Internet supersenisetd . Make sure you use the logfile optien in conjunction
with this mode and specify thé option before any other options.

-t timeout
Set the idle session timeout (default 60 minutes).
-k kilobytes
Set the (approximate) maximum size of present response messages. Default is 1024 KB (1 MB).
A listener-address consists of an optional transport mode followed by a colon (;) followed by a

listener address. The transport mode is eitiserortcp (default).

For TCP, an address has the form

hostname | IP-number [portnumber]

The port number defaults to 210 (standard 239.50 port) for privileged users (root), and 9999 for normal
users.

Examples

tcp:dranet.dra.com

ssl:secure.lib.com:3000

In both cases, the special hosthame "@" is mapped to the address INADDR_ANY, which causes the
server to listen on any local interface. To start the server listening on the registered port for 239.50, and
to drop root privileges once the ports are bound, execute the server like this (from a root shell):

zebrasrv -u daemon @

You can replacélaemon with another user, eg. your own account, or a dedicated IR server account.

The default behavior farebrasrv is to establish a single TCP/IP listener, for the Z39.50 protocol, on
port 9999.

18

Chapter 6. The Z39.50 Server

Z39.50 Protocol Support and Behavior

Initialization

During initialization, the server will negotiate to version 3 of the Z39.50 protocol, and the option bits for
Search, Present, Scan, NamedResultSets, and concurrentOperations will be set, if requested by the client.
The maximum PDU size is negotiated down to a maximum of 1 MB by default.

Search

FIXME - Need to explain the string tag stuff before people get bogged down with all these attribute
numbers. Perhaps in its own chapter? -H

The supported query type are 1 and 101. All operators are currently supported with the restriction that
only proximity units of type "word" are supported for the proximity operator. Queries can be arbitrarily
complex. Named result sets are supported, and result sets can be used as operands without limitations.
Searches may span multiple databases.

The server has full support for piggy-backed present requests (see also the following section).

Useattributes are interpreted according to the attribute sets which have been loadezkeiyritg
file, and are matched against specific fields as specified inalthe file which describes the profile of the
records which have been loaded. If no Use attribute is provided, a default of Bib-1 Any is assumed.

If a Structureattribute ofPhraseis used in conjunction with &ompletenesattribute ofComplete
(Sub)field the term is matched against the contents of the phrase (long word) register, if one exists for the
givenUseattribute. A phrase register is created for those fields indbee file that contains @-specifier.

If Structure=Phraseis used in conjunction wititncomplete Field the default value foCompleteness

the search is directed against the normal word registers, but if the term contains multiple words, the term
will only match if all of the words are found immediately adjacent, and in the given order. The word
search is performed on those fields that are indexed asitipthe .abs file.

If the Structureattribute isWord List Free-form Textor Document Texthe term is treated as a
natural-language, relevance-ranked query. This search type uses the word register, i.e. those fields that
are indexed as typein the.abs file.

If the Structureattribute isNumeric Stringhe term is treated as an integer. The search is performed on
those fields that are indexed as typi the.abs file.

If the Structureattribute isURxthe term is treated as a URX (URL) entity. The search is performed on
those fields that are indexed as typm the.abs file.

If the Structureattribute isLocal Numbeithe term is treated as native Zebra Record |dentifier.

If the Relationattribute isEquals(default), the term is matched in a normal fashion (modulo truncation
and processing of individual words, if required)R€lationis Less ThanLess Than or EqualGreater

than or Greater than or Equalthe term is assumed to be numerical, and a standard regular expression is
constructed to match the given expressiofRédfationis Relevancgthe standard natural-language query
processor is invoked.

For theTruncationattribute,No Truncationis the defaultLeft Truncationis not supportedProcess #s
supported, as iRegxp-1Regxp-2nables the fault-tolerant (fuzzy) search. As a default, a single error
(deletion, insertion, replacement) is accepted when terms are matched against the register contents.

19

[.]

X*

X+

X?

Xy

x|y

Chapter 6. The Z39.50 Server

Regular expressions

Each term in a query is interpreted as a regular expression if the truncation value ifRkeixer1(102)
or Regxp-A103). Both query types follow the same syntax with the operands:

Matches the charactar

Matches any character.

Matches the set of characters specified; suda@$ or [a-c]

and the operators:

Matchesx zero or more times. Priority: high.

Matchesx one or more times. Priority: high.

Matchesx once or twice. Priority: high. FIXME Is this right? Std regexp has '?’ meaning zero or
one -H

Matchesx, theny. Priority: medium.

Matches eithexr ory. Priority: low.
The order of evaluation may be changed by using parentheses.

If the first character of thegxp-Zjuery is a plus character)it marks the beginning of a section with
non-standard specifiers. The next plus character marks the end of the section. Currently Zebra only
supports one specifier, the error tolerance, which consists one digit.

Since the plus operator is normally a suffix operator the addition to the query syntax doesn't violate the

syntax for standard regular expressions.
Query examples

Phrase search fanformation retrievalin the title-register:

@attr 1=4 "information retrieval"

20

Chapter 6. The Z39.50 Server

Ranked search for the same thing:

@attr 1=4 @attr 2=102 "Information retrieval"

Phrase search with a regular expression:

@attr 1=4 @attr 5=102 "informat.* retrieval"

Ranked search with a regular expression:

@attr 1=4 @attr 5=102 @attr 2=102 "informat.* retrieval"

In the GILS schemagfls.abs), the west-bounding-coordinate is indexed as typand is therefore
searched by specifyingtructureeNumeric String To match all those records with
west-bounding-coordinate greater than -114 we use the following query:

@attr 4=109 @attr 2=5 @attr gils 1=2038 -114

Present

The present facility is supported in a standard fashion. The requested record syntax is matched against the
ones supported by the profile of each record retrieved. If no record syntax is given, SUTRS is the default.
The requested element set name, again, is matched against any provided by the relevant record profiles.

Scan

The attribute combinations provided with the termListAndStartPoint are processed in the same way as
operands in a query (see above). Currently, only the term and the globalOccurrences are returned with
the terminfo structure.

Sort

Z39.50 specifies three different types of sort criteria. Of these Zebra supports the attribute specification
type in which case the use attribute specifies the "Sort register". Sort registers are created for those fields
that are of type "sort" in the default.idx file. The corresponding character mapping file in default.idx
specifies the ordinal of each character used in the actual sort.

21

Chapter 6. The Z39.50 Server

Z39.50 allows the client to specify sorting on one or more input result sets and one output result set.
Zebra supports sorting on one result set only which may or may not be the same as the output result set.

Close

If a Close PDU is received, the server will respond with a Close PDU with reason=FINISHED, no matter
which protocol version was negotiated during initialization. If the protocol version is 3 or more, the
server will generate a Close PDU under certain circumstances, including a session timeout (60 minutes
by default), and certain kinds of protocol errors. Once a Close PDU has been sent, the protocol
association is considered broken, and the transport connection will be closed immediately upon receipt
of further data, or following a short timeout.

22

Chapter 7. The Record Model

The Zebra system is designed to support a wide range of data management applications. The system can
be configured to handle virtually any kind of structured data. Each record in the system is associated with
arecord schemavhich lends context to the data elements of the record. Any number of record schema

can coexist in the system. Although it may be wise to use only a single schema within one database, the
system poses no such restrictions.

The record model described in this chapter applies to the fundamental, structured recard tgse
introduced inthe Section calle®Record Types Chapter 4FIXME - Need to describe the simple
string-tag model, or at least refer to it here. -H

Records pass through three different states during processing in the system.

- When records are accessed by the system, they are represented in their local, or native format. This
might be SGML or HTML files, News or Mail archives, MARC records. If the system doesn'’t already
know how to read the type of data you need to store, you can set up an input filter by preparing
conversion rules based on regular expressions and possibly augmented by a flexible scripting language
(Tcl). The input filter produces as output an internal representation:

« When records are processed by the system, they are represented in a tree-structure, constructed by
tagged data elements hanging off a root node. The tagged elements may contain data or yet more
tagged elements in a recursive structure. The system performs various actions on this tree structure
(indexing, element selection, schema mapping, etc.),

- Before transmitting records to the client, they are first converted from the internal structure to a form
suitable for exchange over the network - according to the Z39.50 standard.

Local Representation

grs.sgmi

As mentioned earlier, Zebra places few restrictions on the type of data that you can index and manage.
Generally, whatever the form of the data, it is parsed by an input filter specific to that format, and turned
into an internal structure that Zebra knows how to handle. This process takes place whenever the record
is accessed - for indexing and retrieval.

The RecordType parameter in thebra.cfg file, or the-t option to the indexer tells Zebra how to

process input records. Two basic types of processing are available - raw text and structured data. Raw
text is just that, and it is selected by providing the arguntexttto Zebra. Structured records are all

handled internally using the basic mechanisms described in the subsequent sections. Zebra can read
structured records in many different formats. How this is done is governed by additional parameters after

the "grs" keyboard, separated by "." characters.

Four basic subtypes to thgstype are currently available:

This is the canonical input format — described below. It is a simple SGML-like syntax.

23

Chapter 7. The Record Model

grs.regxilter

This enables a user-supplied input filter. The mechanisms of these filters are described below.

grs.tclfilter

Similar to grs.regx but using Tcl for rules.

grs.marcabstract syntax

This allows Zebra to read records in the 1ISO2709 (MARC) encoding standard. In this case, the last
parameteabstract syntaxiames theabs file (see below) which describes the specific MARC
structure of the input record as well as the indexing rules.

Canonical Input Format

Although input data can take any form, it is sometimes useful to describe the record processing
capabilities of the system in terms of a single, canonical input format that gives access to the full
spectrum of structure and flexibility in the system. In Zebra, this canonical format is an "SGML-like"
syntax.

To use the canonical format specifis.sgml as the record type.

Consider a record describing an information resource (such a record is sometimes kndoceatsra
record). It might contain a field describing the distributor of the information resource, which might in
turn be partitioned into various fields providing details about the distributor, like this:

<Distributor>

<Name> USGS/WRD </Name>
<Organization> USGS/WRD </Organization>
<Street-Address>

U.S. GEOLOGICAL SURVEY, 505 MARQUETTE, NW
</Street-Address>

<City> ALBUQUERQUE </City>

<State> NM </State>

<Zip-Code> 87102 </Zip-Code>

<Country> USA </Country>

<Telephone> (505) 766-5560 </Telephone>
</Distributor>

Note: The indentation used above is used to illustrate how Zebra interprets the mark-up. The
indentation, in it