YAZ User’'s Guide and Reference

Sebastian Hammer

Adam Dickmeiss

Edited by
Adam Dickmeiss

YAZ User’s Guide and Reference
by Sebastian Hammer

by Adam Dickmeiss
Edited by Adam Dickmeiss

Copyright © 1995-2003 by Index Data

This document is the programmer’s guide and reference to the YAZ package version 2.0.3. YAZ is a compact toolkit
that provides access to the 239.50 and SRW/SRU protocols, as well as a set of higher-level tools for implementing
the server and client roles, respectively. The documentation can be used on its own, or as a reference when looking at
the example applications provided with the package.

Table of Contents

O [T (0T (3 Tox 1 T0] o SOOI 1
Reading thiS MaNUAL...........ccoueiiieeise e e e s bt e ne e e enenns 1

LI (S T 2

2. Compilation and INSTAIIALIONccciiereeeeese e et aeseeneeneenenns 5
T (0o ¥ T3 1 o I 5
L]\ OO PPEPROt 5
Compiling from SOUICE ON UNDX....c.couiiiiiirieiirieirieereeesee s 5

How to make apps using YAZ 0N UNDX......cciiiiiininee e 8

RTAT 21N 1 S 9
Compiling from SOUrce 0N WINSBZ.........co i 9

How to make apps using YAZ 0N WINSB2.......ccoiiiirriceseesees e 11

KT @ L@ 1Y T 12
(O70]] 01T 110 F- 3OO PO 12
Z39.50 ProtoCOl DENAVIOL.......ccviee ettt ettt et s ere e 14

SRW ProtoCOl DENAVIQL..........cooiiei ettt ettt saneeare e 14

L@ 11 1= 1= O 14
ProtOCOl DENAVIQL.........coiii it sttt re e s re e st e e ae e reeenns 15

RESUIL SELS......tiiie et e st e st e e be e sabesbe e be e saeeeaseeabeesheesaseenbeeshaeennennbeesreas 15
Z39.50 ProtoCOl DENAVIOL.......ccveee ettt et enre e 16

SRW ProtoCOl BENAVIQL...........coviiece ettt s ere e 17

RECOIUS ...ttt ettt e st e e be et e s beeaeesbesaaesbesbeesbeebeeasesbesasesbesbeeabesbesnsensesnnesens 17
Z39.50 ProtoCOl BENAVIOL.........ccoviiieieecte ettt b e 19

SRW ProtoCOl DENAVIQN.......cc.ccuieiiie ettt eb e 19

Yo=Y o SO S 19
L) 40 1R 20

YT £ 21

R 1T (S AW Y (O 22
LY (0T {803 1o o 22

The Database FrONTEI.cceeiveiieceieetee ettt et e e e st e st e saeeebeesseesaesenbeenseesresanes 22

THE BACKENT AP.....ooceeeeee ettt ettt ettt et s b e sbe e eab e e s bessbeesatsebeesbeesaesenbeereesresanns 23

YOUr MaiN() ROULINE........couiiiiiiiieetireete sttt st sttt b e 23

The BaCKeNd FUNCHIOMNS.........oioeeetee ettt ettt et et tee e e e te st esaeesaeeebeesseesnesenbeenseesresenes 25

DL ettt e e e e e e et e e e e ae e e e —eeeaabeeeaateeeaareeeahaeeeaareeaabeeeabeeeareeeannes 25

SEAICH AN TNV ...cteeceee ettt ettt ettt te et e e st e s s b e eare e beesaeesaseenbeesaeesanesnbeeas 27

DL =] (YOO 29

LST07= 1 o OSSOSO TR RRRO 30

FaY o] o] ITor=1uTo] o I8 191V o o= 11T] o NSRRI 30

T N (SO VA of 11 o | AU USROS 34
Y oTo (8 o3 1 o] o DO USSP PRSP 34
INVOKING the YAZ CHENL.....ceeeeeeeee ettt e te st e s be e e snesanennens 34
COMMEANTS. ...ttt et e et e e be e s be e e e e e ae e beesaeeeaeesabeesseeeaessabeeseeabeesatesnbeeseesbeesnsennseesrees 35

Y= = 1o 1T S 39

6. The Z39.50 ASN.L MOAUIE.........eeeeeeie ettt ettt et e et e sttt ste e e st e s st e e ssbeessabeeeseseaesbenas 41

10T [o 1o o S 41
Preparing PDUS.........cociiiiieienie sttt bbbt b ettt s e s b e b 41
ODJECE IABNTITIEIS ...ttt ettt bbb e 42
EXTERNAL DALA.......ccueirietirieiirietiisiisiesisiesesiese st stesessesessesessssesessesessessssesessesessesessesessesesesessesens 43
PDU CONLENTS TADLE.......eieiee ettt e e e a e st e e e et ebesbeseeseeeeneas 45
7. SOAP GNA SRW.....coiiiiiieiiiee sttt sttt st sttt be e be e s be s s ae s seebese et et e be e ebe st s besesaesesensenensens 51
T e o (¥ ox 1 o] o NSV 51
o I I TSSO 51
] @ o= T 1= Vo =S 51
SRW ettt ettt e e E e e b et R et Rt Ee Rt e Re e be e R et b et Ee e eRe Rt R e re e tens 53
8. SUPPOITING TOOIS....c.eieeeeeeieitee ettt b et se et ae et b e se e e e e se e eae b e b e 56
QUETY SYNTAX PAISEIS ... uiiiiiiiiiiiiee sttt ettt st sae s sb e s b e e sbe e st e e nbe e beesbaesnreebeesees 56
= T O T 1T Y o T - | O 56
Using Proximity Operators With PQE-..........coviviiviieeee e 58

L@ o U =T T3P 59

[O TSRS PRTPRPTRPN 61

LT O IS 1] - S 61

L1 @ I 1 -1 11T R 63

Qualifier SPECIfICAtION.........ccoiireiree e 63

(@ U=V == TSRS 64

(0] 010 0T=T 01O 65

D 1= o3 111 S 65

L O I A o S 65

L TSR PRRRSSRPSRRN 66

COL PAISING..ecttreetereete sttt ettt sttt b et b et b et se bt et e et e se et e e e b e e sre s e 66

(010 I 1 1= SRR URURRR 67

O1@ I (o =@] ot 01V/=T =1 o DR 69
Specification of CQL t0 RPN MaPPING.......ccoerrrerreririeenieesieeseere s 70

(610 (01 (1@ T o0] 417/=1 5] 0] o OSSR 72

(@][Tox (o [=T o1 1171 &= USRS 72
N1 o] o] L=V =10 o] oSSR 76
9. THE ODR MOUUIE........ciiieiiiieieieeie sttt sttt st se st b et e et et be e be s s be s saesesense e ntens 77
INEFOTUCTION ...ttt b e bbb e et b s b sbe s b e e e et eaeeb e st e seeseenenea 77
L0 L= o T 15 O RSPRS 77
ODR SHEAMS.....ceeiiteeee ettt s et e e et e e e b e sa e e s e e re e e e sre e e e seesreenrenreennennas 77
MEMOIY MaNAGEIMENL.......ccue ittt bbb b e s beenbe e sbe e sbeenneesreesaes 77
Encoding and Decoding Data.........cccccvveeieiirieniecieise et 78

DT Vo | [0 1) TR 81
SUMMATY ANA SYNOPSIS.....ueeiirerierieieeeseiestesteseseeseerestesessesseessessessessessessessessssessessessessesens 82
Programming With ODR.......cc.ccueoiiiiiie e e e e st e e s s s st e e e e e sresteseeseenannens 82
The Primitive ASN.L TYPES.....eicceceeereseseseree e esestestestestesaesaesessesse e tesaeeessesessessessensenennes 82
INTEGER ...ttt bbbt 83
BOOLEAN ...ttt sttt b st ettt st ettt 83

o S 83

1 S 83

OCTET STRING. ..ottt et r e 84

BIT STRING......ceititieiie ettt et s ae e s be e s be bt e b e s be e e snesaeeneeas 84

OBJECT IDENTIFIERc ottt st 85

Tagging PrMItIVE TYPES.....couiiieiiireciereetereet et 85
CONSITUCTE TYPES ...ttt ettt sttt sttt b et b et a et e bt sb b e ebese b e neebe e b e e e 85

Tagging CONSIIUCIEA TYPES....ucuirieiirietirietieet ettt 87

Tl o] [To] 1 A I=To To |1 T USSR 87

[q o] [od L A F=To o 1o T FO TR 87

SEQUENCE OF.....oiiiiiiisieitie sttt bbbt bbbt 88

(01 5 [0 1108 = 1V o 1=~ USSP USPTPRP 89
[D]=] o 8T [[1o T TR PSSP 92

10. The COMSTACK MOUUIEc.ciiriieieittriree ettt 93
SyNoPsSIS (DIOCKING MOAE)........cceiieiiceeiee et e e s ae s e e tesreeneennas 93

Ty To (U1 i o] o WSS 94
COMMON FUNCHIONS......ciiiieerereereses ettt ettt r e n e r e 94
Managing ENAPOINTS.......cc.coiciiiii et sr e ens 94

D= L= W (] =g T =R 95

(O 1TT o 1 RS T =SSOSO SRS 96
SEBIVEE SIUB......ecveiiee ettt et r R 97
AGAIESSES ...ttt r e R e e R Rt n s 98

1T T | 0 1) =SSR 98
SUMMATY AN SYNOPSIS . c.eeeteirterieieeriet ettt sttt sttt sttt et s be e st seste b e ebe e eaene 99

11, FULUIE DIFECHIONS. ... 101
N I o =1 1 102
INdEX Data COPYIIGNL. ..o bbb 102
Additional Copyright STAEMENLSc.ccoiiriiee e 102

B. ADOUL INAEX DALAceiviitiectieciietee ettt ctee et et s b e et esate e sbeesaeesaseebessbeesaseenbeesseessseenbessaeesneesares 104
LG O =T [£ OSSR 105

List of Tables

3-1. ZOOM CONNECLION OPLIONS.....eiveeeereetistesieseereeesteseseesseseeessessestes e sseseesessessessessessesessessessessesseneens 13
3-2. ZOOM RESUIt SEL OPLIONS.....ccviiieeeerestisese st e eestese e saeee e e sre e tesee e esesse s e seessensesessessessessesseneens 16
T HA @101V IS Tor 1 o IST=) A @] o] i oo S 20
6-1. Default settings for PDU Initialize REQUESL. ..o 45
6-2. Default settings for PDU Initialize RESPONSE.......ccciriririreiirieeriee e 45
6-3. Default settings for PDU Search REQUEST..........ccoiiriinneienee e 46
6-4. Default settings for PDU Search RESPANSE........ccociriiiireiiiee e 46
6-5. Default settings for PDU Present REQUESL..........ccoiiriiiieinee e 46
6-6. Default settings for PDU Present RESPANSE........c.coirierireitnee et 47
6-7. Default settings for Delete Result Set REQUEST..........cocco e 47
6-8. Default settings for Delete Result Set RESPONSE. ... 47
6-9. Default settings for SCAN REQUEST..........ccoci i 48
6-10. Default settings for SCAN RESPONSE........coiviirierrierieee ettt 48
6-11. Default settings for Trigger Resource Control REQUEST.........cccovriirrennenenee e 48
6-12. Default settings for Resource Control REQUESL.........cccoriiiiiiereere e 48
6-13. Default settings for Resource Control RESPANSE..........cceiriririererrenere e 49
6-14. Default settings for Access Control REQUESL...........ooiiiiiine e 49
6-15. Default settings for Access Control RESPANSE........ccecvreririrere e 49
6-16. Default Settings fOr SEOMENL........co e e b 49
6-17. Default SEttiNgS fOr ClOSE......coui ettt r e nee e 50
8-1. ComMON Bib-1 AIHDULES......c.eeiriiitee et 63
8-2. Special attribute COMBDOS.........cco i 63
S T O O I [=103 1177 PSSR 65
O-1. ODR EITON COUEBS.......couiuireirereeteseereestee sttt ettt e se b e b et r et r et r e nr s e n e nne e 81

List of Figures

L0 YAZ TAYEIS. ..ttt sttt e b et b et b et bbbt e e bt s e bt e e b et b et bRt bbb e bt e b e bbb 2

List of Examples

S R O O I o [0 1T 1= 62
S O @ IR o] o) {1 64
R T (@ I (o I = o NI 4 T o] o1 I 1= 71

Vi

Chapter 1. Introduction

YAZ is a C/C++ library for information retrieval applications using the Z39.50/SRW/SRU protocols for
information retrieval.

Properties of YAZ:

« Complete 239.50 (http://www.loc.gov/z3950/agency/) version 3 support. Amendments and
Z39.50-2002 revision is supported.

« Supports SRW/SRU (http://www.loc.gov/z3950/agency/zing/srw/) version 1.0 (over HTTP and
HTTPS).

- Includes BER encoders/decoders for the ISO ILL (http://www.nlc-bnc.ca/isolill/) protocol.

« Supports the following transports: BER over TCP/IP (RFC1729
(http:/iwww.fags.org/rfcs/rfc1729.html)), BER over unix local socket, and HTTP 1.1
(http://www.w3.org/Protocols/rfc2616/rfc2616.html).

« Secure Socket Layer support using OpenSSL (http://www.openssl.org/). If enabled, YAZ uses HTTPS
transport (for SOAP) or "Secure BER" (for Z39.50).

« Offers ZOOM (http://zoom.z3950.0rg/) C APl implementing both Z39.50 and SRW.

« The YAZ library offers a set of useful utilities related to the protocols, such as MARC (ISO2709)
parser, CCL (ISO8777) parser, CQL (http://www.loc.gov/z3950/agency/zing/cql/) parser, memory
management routines, character set conversion.

- Portable code. YAZ compiles out-of-the box on most Unixes and on Windows using Microsoft Visual
C++.

- Fast operation. The C based BER encoders/decoders as well as the server component of YAZ is very
fast.

. Liberal license that allows for commercial use of YAZ.

Reading this Manual

Most implementors only need to read a fraction of the material in thie manual, so a quick walkthrough of
the chapters is in order.

- Chapter Zontains installation instructions for YAZ. You don’t need reading this if you expect to
download YAZ binaries. However, the chapter contains information about how to yoake
application link with YAZ.

« Chapter Jescribes the ZOOM API of YAZ. This is definitely worth a read if you wish to develop a
Z39.50/SRW client.

- Chapter 4escribes the generic frontend server and explains how to develop server Z39.50/SRW
applications for YAZ. Obviously worth reading if you're to develop a server.

« Chapter Sdescribes how to use the YAZ 239.50 client. If you're developer and wish to test your
server or a server from another party, you might find this chapter useful.

Chapter 1. Introduction

« Chapter 6documents the most commonly used Z39.50 C data structures offered by the YAZ API.
Client developers using ZOOM and non-Z39.50 implementors may skip this.

« Chapter ™escribes how SRW and SOAP is used in YAZ. Only if you're developing SOAP/SRW
applications this section is a must.

- Chapter &ontains sections for the various tools offered by YAZ. Scan through the material quickly
and see what's relevant to you! SRW/SRU implementors might fin€ @k section particularly
useful.

« Chapter Qoes through the details of the ODR module which is the work horse that encodes and
decodes BER packages. Implementors using ZOOM only do not need reading this. Most other Z39.50
implementors only need to read the first two sectilmoduction Using ODR

« Chapter 1@escribes the network layer module COMSTACK. Implementors using ZOOM or the
generic frontend server may skip this. Others, presumably, handling client/server communication on
their own should read this.

The API

The YAZ (http://www.indexdata.dk/yaz/) toolkit offers several different levels of access to the
1SO23950/239.50 (http://lwww.loc.gov/z3950/agency/), ILL (http://www.nlc-bnc.calisol/ill/) and SRW
(http:/lwww.loc.gov/z3950/agency/zing/srw/) protocols. The level that you need to use depends on your
requirements, and the role (server or client) that you want to implement. If you're developing a client
application you should consider tZ®©OM API. It is, by far, the easiest way to develop clients in C.

Server implementers should consider gameric frontend servelone of those high-level APIs support

the whole protocol, but they do include most facilities used in existing Z39.50 applications.

If you're using 'exotic’ functionality (meaning anything not included in the high-level APIs), developing
non-standard extensions to Z39.50 or you're going to develop an ILL application you'll have to learn the
lower level APIs of YAZ.

The YAZ toolkit modules is shown in figureigure 1-1

Chapter 1. Introduction

Figure 1-1. YAZ layers

Client’'Server Application

ILL £38.50 || SRW sRLU
AN A5 SOAP | GET

ODR (BER) HTTP

COMSTACK

Sal

There are four layers.

« Aclient or server application (or both). This layer includes ZOOM and the generic frontend server.

- The second layer provides a C represenation of the protocol units (packages) for Z39.50 ASN.1, ILL
ASN.1, SRW SOAP.

- The third layer encodes and decodes protocol data units to simple packages (buffer with certain
length). The ODR module encodes and decodes BER whereas the HTTP modules encodes and
decodes HTTP ruquests/responses.

« The lowest layer is COMSTACK which exchanges the encoded packages with a peer process over a
network.

The 239.50 ASN.1 module represents the ASN.1 definition of the Z39.50 protocol. It establishes a set of
type and structure definitions, with one structure for each of the top-level PDUs, and one structure or
type for each of the contained ASN.1 types. For primitive types, or other types that are defined by the
ASN.1 standard itself (such as the EXTERNAL type), the C representation is provided by the ODR
(Open Data Representation) subsystem.

ODR is a basic mechanism for representing an ASN.1 type in the C programming language, and for
implementing BER encoders and decoders for values of that type. The types defined in the Z39.50
ASN.1 module generally have the prefix, and a suffix corresponding to the name of the type in the
ASN.1 specification of the protocol (generally Z39.50-1995). In the case of base types (those originating
in the ASN.1 standard itself), the prefddr_ is sometimes seen. Either way, look for the actual

definition in eitherz-core.h (for the types from the protocolpdr.h (for the primitive ASN.1 types).

Chapter 1. Introduction

The 239.50 ASN.1 library also provides functions (which are, in turn, defined using ODR primitives) for
encoding and decoding data values. Their general form is

int z_xxx (ODR o, Z_xxx **p, int optional , const char * name);

(note the lower-case "z" in the function name)

Note: If you are using the premade definitions of the Z39.50 ASN.1 module, and you are not adding
new protocol of your own, the only parts of ODR that you need to worry about are documented in
section Using ODR.

When you have created a BER-encoded buffer, you can use the COMSTACK subsystem to transmit (or
receive) data over the network. The COMSTACK module provides simple functions for establishing a
connection (passively or actively, depending on the role of your application), and for exchanging
BER-encoded PDUs over that connection. When you create a connection endpoint, you need to specify
what transport to use (TCP/IP, SSL or UNIX sockets). For the remainder of the connection’s lifetime,
you don't have to worry about the underlying transport protocol at all - the COMSTACK will ensure that
the correct mechanism is used.

We call the combined interfaces to ODR, Z39.50 ASN.1, and COMSTACK the service level API. It's the
API that most closely models the Z39.50 service/protocol definition, and it provides unlimited access to
all fields and facilities of the protocol definitions.

The reason that the YAZ service-level APl is a conglomerate of the APIs from three different submodules
is twofold. First, we wanted to allow the user a choice of different options for each major task. For
instance, if you don't like the protocol API provided by ODR/Z39.50 ASN.1, you can use SNACC or
BERUIils instead, and still have the benefits of the transparent transport approach of the COMSTACK
module. Secondly, we realize that you may have to fit the toolkit into an existing event-processing
structure, in a way that is incompatible with the COMSTACK interface or some other part of YAZ.

Chapter 2. Compilation and Installation

Introduction

UNIX

The latest version of the software will generally be found at:
http://ftp.indexdata.dk/pub/yaz/ (http://ftp.indexdata.dk/pub/yaz/)

We have tried our best to keep the software portable, and on many platforms, you should be able to
compile everything with little or no changes.

The software is regularly tested on Debian GNU/Linux (http://www.debian.org/), Redhat Linux
(http://www.redhat.com/), Gentoo Linux (http://www.gentoo.org/), NetBSD (Cobalt MIPS)
(http://www.netbsd.org/Ports/cobalt/), FreeBSD (i386) (http://www.freebsd.org/), MAC OSX
(http://www.apple.com/macosx/), SunOS 5.8 (sparc) (http://wwws.sun.com/software/solaris/),
Windows 2000 SP3 (http://www.microsoft.com/windows2000/).

Some versions have be known to work on HP/UX, DEC Unix, OpenBSD, IBM AIX, Data General
DG/UX (with some CFLAGS tinkering), SGI/IRIX, DDE Supermax, Apple Macintosh (using the
Codewarrior programming environment and the GUSI socket libraries), IBM AS/400 .

If you move the software to other platforms, we'd be grateful if you'd let us know about it. If you run
into difficulties, we will try to help if we can, and if you solve the problems, we would be happy to
include your fixes in the next release. So far, we have mostly avéitizds for individual platforms,
and we'd like to keep it that way as far as it makes sense.

We maintain a mailing-list for the purpose of announcing new releases and bug-fixes, as well as general
discussion. Subscribe by sending mail to yaz-request@indexdata.dk (mailto:yaz-request@indexdata.dk)
or fill-in the form here (http://www.indexdata.dk/mailmanl/listinfo/yazlist). General questions and
problems can be directed at yaz-help@indexdata.dk (mailto:yaz-help@indexdata.dk), or the address
given at the top of this document.

We provide Debian GNU/Linux (http://www.debian.org/) and Redhat (http://www.redhat.com/)
packages for YAZ. Only i386 binary packages are available. You should be able to create packages for
other CPU’s by building them from the source package.

Compiling from source on Unix

Note that if your system doesn’t have a native ANSI C compiler, you may have to acquire one separately.
We recommend GCC (http://gcc.gnu.org/).

If you wish to use character set conversion facilities in YAZ or if you are compiling YAZ for use with
Zebra it is a good idea to ensure that the iconv library is installed. Some Unixes today already have it - if
not, we suggest GNU iconv (http://www.gnu.org/software/libiconv/).

The XML C library libxml2 (http://www.xmlsoft.org/) is required if YAZ is to support SRW (and
SOAP). This library is very portable and should compile out-of-the box on virtually all Unix platforms.
It is available in binary forms for Linux and others.

Chapter 2. Compilation and Installation

The GNU tools Autoconf (http://www.gnu.org/software/autoconf/), Automake
(http://lwww.gnu.org/software/automake/) and Libtool (http://www.gnu.org/software/libtool/) are used to
generate Makefiles and configure YAZ for the system. Yomalghese tools unless you're using the
CVS version of YAZ.

The CQL parser for YAZ is built using GNU Bison (http://www.gnu.org/software/bison/). This tool is
only needed if you're using the CVS version of YAZ.

YAZ includes a tiny ASN.1 compiler. This compiler is written in Tcl (http://www.tcl.tk/). But as for
Bison you do not need it unless you're using CVS version of YAZ or you're using the compiler to built
own codecs for private ASN.1.

Generally it should be sufficient to run configure without options, like this:

Jconfigure

The configure script attempts to use use the C compiler specified IgCiéavironment variable. If not
set, GNU C will be used if it is available. TREFLAGSenvironment variable holds options to be passed
to the C compiler. If you're using Bourne-compatible shell you may pass something like this to use a
particular C compiler with optimization enabled:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

To customize YAZ, the configure script also accepts a set of options. The most important are:

=prefix
Specifies installation prefix for YAZ. This is only needed if you raake install later to
perform a "system" installation. The prefix/isr/local if not specified.

--enable-tcpd

The front end server will be built using Wietse’s TCP wrapper library
(ftp://ftp.porcupine.org/pub/security/index.html). It allows you to allow/deny clients depending on

IP number. The TCP wrapper library is often used in Linux/BSD distributions. See hosts_access(5)

and tcpd(8).

--enable-threads

YAZ will be built using POSIX threads. SpecificalfREENTRANWill be defined during
compilation.

--enable-shared

The make process will create shared libraries (also known as shared okjertBy default, no
shared libraries are created - equivalentdsable-shared

--disable-shared

The make process will not create static libraries)(By default, static libraries are created -
equivalent to-enable-static

Chapter 2. Compilation and Installation

--with-iconv [=prefix]
Compile YAZ with iconv library in directoryprefix . By default configure will search for iconv
on your system. Use this option if it doesn't find iconv. Alternatively you can use
--without-iconv to force YAZ not to use iconv.
-with-xml2 [=prefix]
Compile YAZ with libxml2 (http://www.xmlsoft.org/) in directorprefix . Use this option if you
want SOAP support. By default configure will search for libxml2 on your system. Use this option if
it doesn't find libxml2. Alternatively you can usewithout-xmi2 to force YAZ not to use
libxml2.
--with-openss| [=prefix]

YAZ will be linked with the OpenSSL libraries and an SSL COMSTACK will be provided. Note
that SSL support is still experimental.

When configured, build the software by typing:

make

The following files are generated by the make process:

lib/libyaz.la
Main YAZ library. This is no ordinary library. It's a Libtool archive. By default, YAZ creates a
static library inlib/.libs/libyaz.a

lib/libyazthread.la
When threading is supported/enabled by configure this Libtool library is created. It includes
functions that allows YAZ to use threads.

ztestlyaz-ztest

Test Z39.50 server.

client/yaz-client

Z39.50 client for testing the protocol. See chap¥Z client for more information.

yaz-config
A Bourne-shell script, generated by configure, that specifies how external applications should
compile - and link with YAZ.

yaz-asncomp

The ASN.1 compiler for YAZ. Requires the Tcl Shell, tclshAATHto operate.

Chapter 2. Compilation and Installation

zoom/zoomsh

A simple shell implemented on top of tZ®OM functions. The shell is a command line
application that allows you to enter simple commands to perform ZOOM operations.

zoom/zoomtstl , zoom/zoomtst2 | ..

Several small applications that demonstrates the ZOOM API.

If you wish to install YAZ in system directorigasr/local/bin , lusr/local/lib .. etc, you can
type:

make install

You probably need to have root access in order to perform this. You must specifgrtfiz ~ option
for configure if you wish to install YAZ in other directories than the defaust/local/

If you wish to perform an un-installation of YAZ, use:

make uninstall

This will only work if you haven't reconfigured YAZ (and therefore changed installation prefix). Note
that uninstall will not remove directories created by make install /esg/local/include/yaz

How to make apps using YAZ on UNIX

This section describes how to compile - and link your own applications using the YAZ toolkit. If you're
used to Makefiles this shouldn’t be hard. As for other libraries you have used before, you have to set a
proper include path for your C/C++ compiler and specify the location of YAZ libraries. You can do it by
hand, but generally we suggest you useytieconfig that is generated byonfigure . This is

especially important if you're using the threaded version of YAZ which require you to pass more options
to your linker/compiler.

Theyaz-config script accepts command line options that makegy#laeconfig script print options
that you should use in your make process. The most important onesciags , --libs which
prints C compiler flags, and linker flags respectively.

A small and complet&akefile for a C application consisting of one source filgjprog.c , may look
like this:

YAZCONFIG=/usr/local/bin/yaz-config
CFLAGS='$(YAZCONFIG) --cflags'
LIBS='$(YAZCONFIG) --libs'
myprog: myprog.o

$(CC) $(CFLAGS) -0 myprog myprog.o $(LIBS)

WIN32

DEBUG

Chapter 2. Compilation and Installation

The CFLAGS variable consists of a C compiler directive that will set the include path fathat
directory ofyaz . That is, if YAZ header files were installed fasr/local/include/yaz , then
include path is set ttusr/local/include . Therefore, in your applications you should use

#include <yaz/proto.h>

andnot

#include <proto.h>

For Libtool users, thgaz-config script provides a different variant of optietibs , called
--lalibs that returns the name of the Libtool acrhive(s) for YAZ rather than the ordinary ones.

For applications using the threaded version of YAZ, speitifyads after the other options. When
threads is given, more flags and linker flags will be printedyaz-config . If our previous example
was using threads, you’d have to modify the lines thaCs@iAGSandLIBS as follows:

CFLAGS='$(YAZCONFIG) --cflags threads'
LIBS="$(YAZCONFIG) --libs threads'

There is no need specify POSIX thread libraries in your Makefile.LTR8 variable includes that as
well.

The easiest way to install YAZ on Windows is by downloading an installer from here
(http://ftp.indexdata.dk/pub/yaz/win32). The installer comes with source too - in case you wish to
compile YAZ with different Compiler options etc.

Compiling from Source on WIN32

YAZ is shipped with "makefiles" for the NMAKE tool that comes with Microsoft Visual C++
(http://msdn.microsoft.com/vstudio/). Version 6 has been tested. We expect that YAZ compiles with
version 5 as well.

Start a command prompt and switch the sub directaywhere the filemakefile is located.
Customize the installation by editing theakefile file (for example by using notepad). The following
summarizes the most important settings in that file:

If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded
debug DLL). If set to O, the software is compiled with release libraries (code generation is
multi-threaded DLL).

Chapter 2. Compilation and Installation

HAVE_TCL TCL
If HAVE_TCLis set to 1, nmake will use the ASN.1 compiler (Tcl based). You must@eto the
full path of the Tcl interpreter.

If you do not have Tcl installed, sefAVE_TCLto 0.

HAVE_BISON BISON

If GNU Bison is present, you might sefAVE_ICONMo 1 and specify the Bison executable in
BISON. Bison is only required if you use the CVS version of YAZ or if you modify the grammar for

CQL (cqly).
GNU Bison for Windows is part of unxutils (http://unxutils.sourceforge.net/).

HAVE_ICONYICONV_DIR

If HAVE_ICONMSs set to 1, YAZ is compiled with iconv support. In this configuration, set
ICONV_DIR to the iconv source directory.

HAVE_LIBXMLZ, LIBXML2_DIR

If HAVE_LIBXML2is setto 1, YAZ is compiled with SRW (and SOAP) support. In this
configuration, setIBXML2_DIR to the libxml2 (http://www.xmlsoft.org/) source directory.

Windows versions of libxml2 and iconv can be found here
(http://lwww.zlatkovic.com/projects/libxml/binaries.html).

When satisfied with the settings in the makefile, type

nmake

Note: If the nmake command is not found on your system you probably haven't defined the
environment variables required to use that tool. To fix that, find and run the batch file vcvars32.bat
You need to run it from within the command prompt or set the environment variables "globally";

otherwise it doesn't work.

If you wish to recompile YAZ - for example if you modify settings in tinakefile you can delete
object files, etc by running.

nmake clean

The following files are generated upon successful compilation:

10

Chapter 2. Compilation and Installation

bin/yaz.dll
YAZ multi-threaded Dynamic Link Library.

liblyaz.lib

Import library foryaz.dll

bin/yaz-client.exe

YAZ Z39.50 client application. It's a WIN32 console application. See chayAer client for more
information.

bin/yaz-ztest.exe

Z39.50 multi-threaded test/example server. It's a WIN32 console application.

bin/zoomsh.exe

Simple console application implemented on top of ZI&OM functions. The application is a
command line shell that allows you to enter simple commands to perform ZOOM operations.

bin/zoomtstl.exe , bin/zoomtst2.exe) e

Several small applications that demonstrates the ZOOM API.

How to make apps using YAZ on WIN32
This section will go though the process of linking your WIN32 applications with YAZ.

Some people are confused by the fact that we use the nmake tool to build YAZ. They think they have to
do that too - in order to make their WIN32 applications work with YAZ. The good news is that you don't
have to. You can use the integrated environment of Visual Studio if desired for your own application.

When setting up a project or Makefile you have to set the following:
include path
Set it to theinclude directory of YAZ.

import libraryyaz.lib
You must link with this library. It's located in the sub directdity of YAZ.

dynamic link libraryyaz.dll

This DLL must be in your execution path when you invoke your application. Specifically, you
should distribute this DLL with your application.

11

Chapter 3. ZOOM

ZOOM is an acronym for '239.50 Object-Orientation Model’ and is an initiative started by Mike Taylor
(Mike is from the UK, which explains the peculiar name of the model). The goal of ZOOM is to provide
a common Z39.50 client API not bound to a particular programming language or toolkit.

Note: A recent addition to YAZ is SRW support. You can now make SRW ZOOM connections by
specifying scheme http:// for the hostname for a connection.

The lack of a simple Z239.50 client API for YAZ has become more and more apparent over time. So when
the first ZOOM specification became available, an implementation for YAZ was quickly developed. For
the first time, it is now as easy (or easier!) to develop clients than servers with YAZ. This chapter
describes the ZOOM C binding. Before going further, please reconsider whether C is the right
programming language for the job. There are other language bindings available for YAZ, and still more
are in active development. See the ZOOM web-site (http://zoom.z3950.0rg/) for more information.

In order to fully understand this chapter you should read and try the example pragremtstl.c
zoomtst2.c , .. in thezoom directory.

The C language misses features found in object oriented languages such as C++, Java, etc. For example,
you'll have to manually, destroy all objects you create, even though you may think of them as temporary.
Most objects has acreate - and a destroy variant. All objects are in fact pointers to internal stuff,

but you don't see that because of typedefs. All destroy methods should gracefully igwiote pointer.

In each of the sections below you'll find a sub section called protocol behavior, that describes how the
API maps to the 239.50 protocol.

Connections
The Connection object is a session with a target.

#include <yaz/zoom.h>
ZOOM_connection ZOOM_connection_new (const char *host, int portnum);
ZOOM_connection ZOOM_connection_create (ZOOM_options options);

void ZOOM_connection_connect(ZOOM_connection ¢, const char *host,
int portnum);
void ZOOM_connection_destroy (ZOOM_connection c);

Connection objects are created with either func#@®OM_connection_new or

ZOOM_connection_create . The former creates and automatically attempts to establish a network
connection with the target. The latter doesn't establish a connection immediately, thus allowing you to
specify options before establishing network connection using the function

ZOOM_connection_connect . If the port numberportnum , is zero, thehost is consulted for a port
specification. If no port is given, 210 is used. A colon denotes the beginning of a port number in the host
string. If the host string includes a slash, the following part specifies a database for the connection.

12

Chapter 3. ZOOM

You can prefix the host with a scheme followed by colon. The default schetere i§239.50 protocol).
The schemeéttp selects SRW over HTTP.

Connection objects should be destroyed using the funZwdM_connection_destroy

void ZOOM_connection_option_set (ZOOM_connection c,
const char *key,
const char *val);

const char *ZOOM_connection_option_get (ZOOM_connection c,

const char *key);

TheZOOM_connection_option_set allows you to set an option given liey to the valuevalue
for the connection. FunctiobhOOM_connection_option_get returns the value for an option given by
key .

Table 3-1. ZOOM Connection Options

Option Description Default
implementationName Name of Your client none
user Authentication user name none
group Authentication group name none
pass Authentication password none
host Target host. This setting is "read-only". It's none
automatically set internally when connecting to a
target.
proxy Proxy host none
async If true (1) the connection operates in asynchron@us

operation which means that all calls are
non-blocking excepOOM_event.

maximumRecordSize Maximum size of single record. 1MB
preferredMessageSize Maximum size of multiple records. 1MB
lang Language for negotiation. none
charset Character set for negotiation. none
targetimplementationld Implementation ID of target. none
targetimplementationName Implementation Name of target. none
targetimplementationVersion Implementation Version of target. none
databaseName One or more database names separated by cisetitr

plus), which to be used by subsequent search
requests on this Connection.

If either optionlang orcharset is set, then Character Set and Language Negotiation
(http://lcweb.loc.gov/z3950/agency/defns/charneg-3.html) is in effect.

int ZOOM_connection_error (ZOOM_connection ¢, const char **cp,
const char **addinfo);

13

Chapter 3. ZOOM

int ZOOM_connection_error_x (ZOOM_connection ¢, const char **cp,
const char **addinfo, const char **dset);

FunctionzOOM_connection_error checks for errors for the last operation(s) performed. The function
returns zero if no errors occurred; non-zero otherwise indicating the error. Paiptarsdaddinfo

holds messages for the error and additional-info if passed aslbah-Function

ZOOM_connection_error_x is an extended version @OM_connection_error that is capable of
returning name of diagnostic setdiset .

Z39.50 Protocol behavior

The callszZOOM_connection_new andZOOM_connection_connect establishes a TCP/IP connection
and sends an Initialize Request to the target if possible. In addition, the calls waits for an Initialize
Response from the target and the result is inspected (OK or rejected).

If proxy is set then the client will establish a TCP/IP connection with the peer as specified fogithe
host and the hostname as part of the connect calls will be set as part of the Initialize Request. The proxy
server will then "forward" the PDU’s transparently to the target behind the proxy.

For the authentication parameters, if optiaer is set and both optiongoup andpass are unset, then

Open style authentication is used (Version 2/3) in which case the username is usually followed by a
slash, then by a password. If eithgoup or pass is set then idPass authentication (Version 3 only) is

used. If none of the options are set, no authentication parameters are set as part of the Initialize Request
(obviously).

When optionasync is 1, it really means that all network operations are postponed (and queued) until the
functionZOOM_event is invoked. When doing so it doesn’t make sense to check for errors after
ZOOM_connection_new is called since that operation "connecting - and init" is still incomplete and the
API cannot tell the outcome (yet).

SRW Protocol behavior

The SRW protocol doesn't feature an Inititialize Request, so the connection phase merely establishes a
TCP/IP connection with the SOAP service.

Most of the ZOOM connection options do not affect SRW and they are ignored. However, future
versions of YAZ might honoimplementationName and put that as part of User-Agent header for
HTTP requests.

Thecharset is used in the Content-Type header of HTTP requests.

Queries
Query objects represents queries.

ZOOM_query ZOOM_query_create(void);

void ZOOM_query_destroy(ZOOM_query q);

14

Chapter 3. ZOOM

int ZOOM_query_prefix(ZOOM_query q, const char *str);
int ZOOM_query_cql(ZOOM_query s, const char *str);

int ZOOM_query_sortby(ZOOM_query g, const char *criteria);

Create query objects usiPOM_query_create and destroy them by callingOOM_query_destroy
RPN-queries can be specified®@Fnotation by using the functiohROOM_query_prefix . The
ZOOM_query_cql specifies a CQL query to be sent to the server/target. More query types will be added
in future versions of YAZ, such asSCL to RPN-mapping, native CCL query, etc. In addition to a search,

a sort criteria may be set. Functid®OM_query_sortby specifies a sort criteria using the same string
notation for sort as offered by théAZ client.

Protocol behavior

The query object is just an interface for the member Query in the SearchRequest. The sortby-function is
an interface to the sortSequence member of the SortRequest.

Result sets

The result set object is a container for records returned from a target.

ZOOM_resultset ZOOM_connection_search(ZOOM_connection,
ZOOM_query Q);

ZOOM_resultset ZOOM_connection_search_pgf(ZOOM_connection c,
const char *q);

void ZOOM_resultset_destroy(ZOOM_resultset r);

FunctionZOOM_connection_search ~ creates a result set given a connection and query. Destroy a result
set by callingzOOM_resultset_destroy . Simple clients may using PQF only may use function
ZOOM_connection_search_pgf in which case creating query objects is not necessary.

void ZOOM_resultset_option_set (ZOOM_resultset r,
const char *key,

const char *val);

const char *ZOOM_resultset_option_get (ZOOM_resultset r,
const char *key);

size_t ZOOM_resultset_size (ZOOM_resultset r);
FunctionsZOOM_resultset_options_set andZOOM _resultset_get sets and gets an option for a

result set similar t&OOM_connection_option_get andZOOM_connection_option_set

15

Chapter 3. ZOOM

The number of hits also called result-count is returned by fun@@@M_resultset_size

Table 3-2. ZOOM Result set Options

Option Description Default

piggyback True (1) if piggyback should be used in searches; fdlse
(0) if not.

start Offset of first record to be retrieved from target. Firs®

record has offset 0 unlike the protocol specifications
where first record has position 1.

count Number of records to be retrieved. 0

step Number of records to be retrieved in one chunk. Th@
value, 0 means unchunked.

elementSetName Element-Set name of records. Most targets shouleshboeor
element set nam@andF for brief and full respectively.

preferredRecordSyntax Preferred Syntax, SUGDSMARCSUTRS etc. none

schema Schema for retrieval, suchGils-schema none
Geo-schema , etc.

smallSetUpperBound If hits is less than or equal to this value, then targe®will
return all records using small element set name

largeSetLowerBound If hits is greater than this value, the target will returh no
records.

mediumSetPresentNumber This value represents the number of records to b8
returned as part of a search when when hits is less than
or equal to large set lower bound and if hits is greater
than small set upper bound.

smallSetElementSetName The element set name to be used for small result sets. none

mediumSetElementSetName The element set name to be for medium-sized resuie
sets.

setname Name of Result Set (Result Set ID). If this option istétfault
set, the ZOOM module will automatically allocate a
result set name.

Z39.50 Protocol behavior

The creation of a result set involves at least a SearchRequest - SearchResponse protocol handshake.
Following that, if a sort criteria was specified as part of the query, a SortRequest - SortResponse
handshake takes place. Note that it is necessary to perform sorting before any retrieval takes place, so no
records will be returned from the target as part of the SearchResponse because these would be unsorted.
Hence, piggyback is disabled when sort criteria is set. Following Search - and a Possible sort, Retrieval
takes place - as one or more Present Requests - Present Response being transferred.

The API allows for two different modes for retrieval. A high level mode which is somewhat more

powerful and a low level one. The low level is "enabled" when the settimgéiSetUpperBound
mediumSetPresentNumber andlargeSetLowerBound are set. The low level mode thus allows you

to precisely set how records are returned as part of a search response as offered by the 239.50 protocol.

16

Chapter 3. ZOOM

Since the client may be retrieving records as part of the search response, this mode doesn’t work well if
sorting is used.

The high-level mode allows you to fetch a range of records from the result set with a given start offset.
When you use this mode the client will automatically use piggyback if that is possible with the target and
perform one or more present requests as needed. Even if the target returns fewer records as part of a
present response because of a record size limit, etc. the client will repeat sending present requests. As an
example, if optiorstart is 0 (default) andount is 4, andpiggyback is 1 (default) and no sorting

criteria is specified, then the client will attempt to retrieve the 4 records as part the search response (using
piggyback). On the other hand, if eith&art is positive or if a sorting criteria is set, orpfggyback

is 0, then the client will not perform piggyback but send Present Requests instead.

If either of the optionsnediumSetElementSetName andsmallSetElementSetName are unset, the
value of optiorelementSetName is used for piggyback searches. This means that for the high-level
mode you only have to specify one elementSetName option rather than three.

SRW Protocol behavior

Current version of YAZ does not take advantage of a result set id returned by the SRW server. Future
versions might do, however. Since, the ZOOM driver does not save result set IDs any present (retrieval)
is transformed to a SRW SearchRetrieveRequest with same query but, possibly, different offsets.

Optionschema specifies SRW schema for retrieval. However, optieiasentSetName and
preferredRecordSyntax are ignored.

Optionsstart andcount are supported by SRW. The remaining optipiggyback |,
smallSetUpperBound , largeSetLowerBound , mediumSetPresentNumber
mediumSetElementSetName , smallSetElementSetName are unsupported.

SRW supports CQL queriespt PQF. If PQF is used, however, the PQF query is transferred anyway
using non-standard elemguery in SRW SearchRetrieveRequest.

Unfortunately, SRW does not define a database setting. HéaabaseName is unsupported and
ignored. However, the path part in host parameter for functZ@@M_connecton_new and
ZOOM_connection_connect acts as a database (at least for the YAZ SRW server).

Records
A record object is a retrieval record on the client side - created from result sets.

void ZOOM _resultset_records (ZOOM_resultset r,

ZOOM_record *recs,

size_t start, size_t count);
ZOOM_record ZOOM_resultset_record (ZOOM_resultset s, size_t pos);

const char *ZOOM_record_get (ZOOM_record rec, const char *type,
size_t *len);

ZOOM_record ZOOM_record_clone (ZOOM_record rec);

17

database

syntax

render

raw

Chapter 3. ZOOM

void ZOOM_record_destroy (ZOOM_record rec);

References to temporary records are returned by funcfio@v_resultset_records or
ZOOM_resultset_record

If a persistent reference to a record is desiZe&dM_record_clone should be used. It returns a record
reference that should be destroyed by a cal@®M_record_destroy

A single record is returned by functi@DOM_resultset_record that takes a position as argument.
First record has position zero. If no record could be obtaivedL is returned.

FunctionzOOM_resultset_records retrieves a number of records from a result set. Pararstier
andcount specifies the range of records to be returned. Upon completion ratrsig],

..recs[count-1] holds record objects for the records. The array of recarcts should be allocated
prior the callzZOOM_resultset_records . Note that for those records that couldn’t be retrieved from
the targetecs| ..] is set toNULL

In order to extract information about a single rec@Q0OM_record_get is provided. The function
returns a pointer to certain record information. The nature (type) of the pointer depends on the parameter,

type .
Thetype is a string of the format:
form [; charsetfrom [,to]

whereform specifies the format of the returned recdrdm specifies the character set of the record in
its original form (as returned by the servdn, specifies the output (returned) character set encoding. If
charset is not given, then no character set conversion takes plézeislbmitted UTF-8 is assumed.

In addition, for certain types, the lengtin passed will be set to the size in bytes of the returned
information.

The following are the supported values form .

Database of record is returned as a C null-terminated string. Returedype char *

The transfer syntax (OID) of the record is returned as a C null-terminated string. Return type is
const char *

The record is returned in a display friendly format. Upon completion buffer is returneddaype
char *) and length is stored itlen .

The record is returned in the internal YAZ specific format. For GRS-1, Explain, and others, the raw
data is returned as type External * which is just the type for the membamstrievalRecord

in typeNamePlusRecord . For SUTRS and octet aligned record (including all MARCSs) the octet
buffer is returned and the length of the buffer.

18

xmi

Scan

Chapter 3. ZOOM

The record is returned in XML if possible. SRW/SRU and Z39.50 records with transfer syntax
XML are returned verbatim. MARC records are returned in MARCXML
(http://lwww.loc.gov/standards/marcxml/) (converted from 1ISO2709 to MARCXML by YAZ).
GRS-1 and OPAC records are not supported for this form. Upon completion, the XML buffer is
returned (typeonst char *) and length is stored iflen .

Most MARC21 (http://www.loc.gov/marc/) records uses the MARC-8
(http:/lwww.loc.gov/marc/specifications/speccharmarc8.html) character set encoding. An application
that wishes to display in Latin-1 would use

render; charset=marc8,is0-8859-1

Z39.50 Protocol behavior

The functionsZOOM_resultset_record andZOOM _resultset_records inspects the client-side
record cache. Records not found in cache are fetched using Present. The functions may block (and
perform network I/O) - even though opti@sync is 1, because they return records objects. (and there’s
no way to return records objects without retrieving them!).

There is a trick, however, in the usage of functitdOM_resultset_records that allows for delayed
retrieval (and makes it non-blocking). By using a null pointerrBns you're indicating you're not
interested in getting records objectsw.

SRW Protocol behavior

The ZOOM driver for SRW treats records returned by a SRW server as if they where Z239.50 records
with transfer syntax XML and no element set name or database name.

This section describes an interface for Scan. Scan is not an official part of the ZOOM model yet. The
result of a scan operation is tH®OM_scanset which is a set of terms returned by a target.

The Scan interface is 239.50 only. SRW version 1.0 does not support this.

ZOOM_scanset ZOOM_connection_scan (ZOOM_connection c,
const char *startterm);

size_t ZOOM_scanset_size(ZOOM_scanset scan);

const char * ZOOM_scanset_term(ZOOM_scanset scan, size_t pos,
int *occ, size_t *len);

19

Chapter 3. ZOOM

void ZOOM_scanset_destroy (ZOOM_scanset scan);

const char *ZOOM_scanset_option_get (ZOOM_scanset scan,
const char *key);

void ZOOM_scanset_option_set (ZOOM_scanset scan, const char *key,
const char *val);

The scan set is created by functiB@OM_connection_scan which performs a scan operation on the
connection and start term given. If the operation was successful, the size of the scan set can be retrieved
by a call tozOOM_scanset_size . Like result sets, the items are numbered 0,..size-1. To obtain
information about a particular scan term, call funct®dOM_scanset_term . This function takes a scan

set offsetpos and returns a pointer to an actual termN@fLL if non-present. If present, theec andlen

are set to the number of occurrences and the length of the actual term respectively. A scan set may be
freed by a call to functio@OOM_scanset_destroy . FunctionsZOOM_scanset_option_get ~ and
ZOOM_scanset_option_set retrieves and sets an option respectively.

Table 3-3. ZOOM Scan Set Options

Option Description Default

number Number of Scan Terms requested in next scan. Aftd0
scan it holds the actual number of terms returned.

position Preferred Position of term in response in next scan;1
actual position after completion of scan.

stepSize Step Size 0

scanStatus An integer indicating the Scan Status of last scan. 0

Options

Most ZOOM obijects provide a way to specify options to change behavior. From an implementation point
of view a set of options is just like an associative array / hash array, etc.

ZOOM_options ZOOM_options_create (void);
ZOOM_options ZOOM_options_create_with_parent (ZOOM_options parent);

void ZOOM_options_destroy (ZOOM_options opt);

const char *ZOOM_options_get (ZOOM_options opt, const char *name);

void ZOOM_options_set (ZOOM_options opt, const char *name,
const char *v);

typedef const char *(*ZOOM_options_callback)
(void *handle, const char *name);

20

Chapter 3. ZOOM

ZOOM_options_callback
ZOOM_options_set_callback (ZOOM_options opt,
ZOOM_options_callback c,
void *handle);

Events
If you're developing non-blocking applications, you have to deal with events.

int ZOOM_event (int no, ZOOM_connection *cs);

TheZOOM_event executes pending events for a number of connections. Supply the number of
connections imo and an array of connectionséa (cs[0] ... cs[no-1]). A pending event could

be a sending a search, receiving a response, etc. When an event has occurred for one of the connections,
this function returns a positive integerdenoting that an event occurred for connectisjn-1] . When

no events are pending for the connections, a value of zero is returned. To ensure that all outstanding
requests are performed call this function repeatedly until zero is returned.

21

Chapter 4. Generic server

Introduction
If you aren’t into documentation, a good way to learn how the back end interface works is to look at the
backend.h file. Then, look at the small dummy-serverztest/ztest.c . Thebackend.h file also

makes a good reference, once you've chewed your way through the prose of this file.

If you have a database system that you would like to make available by means of Z39.50 or SRW, YAZ
basically offers your two options. You can use the APIs provided by the Z39.50 ASN.1, ODR, and
COMSTACK modules to create and decode PDUs, and exchange them with a client. Using this low-level
interface gives you access to all fields and options of the protocol, and you can construct your server as
close to your existing database as you like. It is also a fairly involved process, requiring you to set up an
event-handling mechanism, protocol state machine, etc. To simplify server implementation, we have
implemented a compact and simple, but reasonably full-functioned server-frontend that will handle most
of the protocol mechanics, while leaving you to concentrate on your database interface.

Note: The backend interface was designed in anticipation of a specific integration task, while still
attempting to achieve some degree of generality. We realize fully that there are points where the
interface can be improved significantly. If you have specific functions or parameters that you think
could be useful, send us a mail (or better, sign on to the mailing list referred to in the top-level
README file). We will try to fit good suggestions into future releases, to the extent that it can be
done without requiring too many structural changes in existing applications.

Note: The YAZ server does not support XCQL.

The Database Frontend

We refer to this software as a generic database frontend. Your database systebackémel database

and the interface between the two is calledllbekend APIThe backend API consists of a small

number of function handlers and structure definitions. You are required to provideitl@ routine

for the server (which can be quite simple), as well as a set of handlers to match each of the prototypes.
The interface functions that you write can use any mechanism you like to communicate with your
database system: You might link the whole thing together with your database application and access it by
function calls; you might use IPC to talk to a database server somewhere; or you might link with
third-party software that handles the communication for you (like a commercial database client library).
At any rate, the handlers will perform the tasks of:

« Initialization.
- Searching.

« Fetching records.

22

Chapter 4. Generic server

« Scanning the database index (optional - if you wish to implement SCAN).
- Extended Services (optional).

« Result-Set Delete (optional).

« Result-Set Sort (optional).

(more functions will be added in time to support as much of Z39.50-1995 as possible).

The Backend API

The header file that you need to use the interface are imthele/yaz directory. It’s called
backend.h . It will include other files from thénclude/yaz ~ directory, so you’ll probably want to use
the -1 option of your compiler to tell it where to find the files. When you make in the top-level YAZ
directory, everything you need to create your server is to link withilfiibyaz.la library.

Your main() Routine

As mentioned, youmain() routine can be quite brief. If you want to initialize global parameters, or
read global configuration tables, this is the place to do it. At the end of the routine, you should call the
function

int statserv_main(int argc, char **argv,
bend_initresult *(*bend_init)(bend_initrequest *r),
void (*bend_close)(void *handle));

The third and fourth arguments are pointers to handlers. Habelher init is called whenever the
server receives an Initialize Request, so it serves as a Z39.50 session initialiZegn@heose
handler is called when the session is closed.

statserv_main will establish listening sockets according to the parameters given. When connection
requests are received, the event handler will typically{) and create a sub-process to handle a new
connection. Alternatively the server may be setup to create threads for each connection. If you do use
global variables and forking, you should be aware, then, that these cannot be shared between
associations, unless you explicitly disable forking by command line parameters.

The server provides a mechanism for controlling some of its behavior without using command-line
options. The function

statserv_options_block *statserv_getcontrol(void);

will return a pointer to atruct statserv_options_block describing the current default settings of
the server. The structure contains these elements:

23

Chapter 4. Generic server

int dynamic
A boolean value, which determines whether the server will fork on each incoming request (TRUE),
or not (FALSE). Default is TRUE. This flag is only read by UNIX-based servers (WIN32 based
servers doesn't fork).

int threads
A boolean value, which determines whether the server will create a thread on each incoming
request (TRUE), or not (FALSE). Default is FALSE. This flag is only read by UNIX-based servers
that offer POSIX Threads support. WIN32-based servers always operate in threaded mode.

int inetd
A boolean value, which determines whether the server will operates under a UNIX INET daemon
(inetd). Default is FALSE.

int loglevel

Set this by ORing the constants definedhitiude/yaz/yaz-log.h

char logfile[ODR_MAXNAME+1]

File for diagnostic output ("": stderr).

char apdufile[ODR_MAXNAME+1]
Name of file for logging incoming and outgoing APDUs ("": don’t log APDUs, 'stderr).

char default_listen[1024]

Same form as the command-line specification of listener address. "": no default listener address.
Default is to listen at "tcp: @:9999". You can only specify one default listener address in this fashion.

enum oid_proto default_proto;

EitherPROTO_z39500r PROTO_SRDefault iSPROTO_Z39_5Q

int idle_timeout;

Maximum session idle-time, in minutes. Zero indicates no (infinite) timeout. Default is 120 minutes.

int maxrecordsize;

Maximum permissible record (message) size. Default is 1Mb. This amount of memory will only be
allocated if a client requests a very large amount of records in one operation (or a big record). Set it
to a lower number if you are worried about resource consumption on your host system.

char confighame[ODR_MAXNAME+1]

Passed to the backend when a new connection is received.

char setuidflODR_MAXNAME+1]

Set user id to the user specified, after binding the listener addresses.

24

Chapter 4. Generic server

void (*bend_start)(struct statserv_options_block *p)

Pointer to function which is called after the command line options have been parsed - but before the
server starts listening. For forked UNIX servers this handler is called in the mother process; for
threaded servers this handler is called in the main thread. The default value of this pointer is NULL
in which case it isn’t invoked by the frontend server. When the server operates as an NT service this
handler is called whenever the service is started.

void (*bend_stop)(struct statserv_options_block *p)

Pointer to function which is called whenever the server has stopped listening for incoming
connections. This function pointer has a default value of NULL in which case it isn’t called. When
the server operates as an NT service this handler is called whenever the service is stopped.

void *handle
User defined pointer (default value NULL). This is a per-server handle that can be used to specify
"user-data". Do not confuse this with the session-handle as returned by bend_init.
The pointer returned bstatserv_getcontrol points to a static area. You are allowed to change the

contents of the structure, but the changes will not take effect before you call

void statserv_setcontrol(statserv_options_block *block);

Note: that you should generally update this structure before calling statserv_main()

The Backend Functions

For each service of the protocol, the backend interface declares one or two functions. You are required to
provide implementations of the functions representing the services that you wish to implement.

Init

bend_initresult (*bend_init)(bend_initrequest *r);

This handler is called once for each new connection request, after a new process/thread has been created,
and an Initialize Request has been received from the client. The pointerteritienit handler is
passed in the call tstatserv_start

This handler is also called when operating in SRW/SRU mode - when a connection has been made (even
though SRW/SRU does not offer this service).

Unlike previous versions of YAZ, thieend_init also serves as a handler that defines the Z39.50
services that the backend wish to support. Pointesd teervice handlers, including search - and fetch
must be specified here in this handler.

25

Chapter 4. Generic server

The request - and result structures are defined as

typedef struct bend_initrequest

{
Z_IdAuthentication *auth;
ODR stream; [* encoding stream */
ODR print; [* printing stream */
Z_Referenceld *referenceld;/* reference ID */
char *peer_name; /* dns host of peer (client) */

char *implementation_id;

char *implementation_name;

char *implementation_version;

int (*bend_sort) (void *handle, bend_sort_rr *rr);

int (*bend_search) (void *handle, bend_search_rr *rr);
int (*bend_fetch) (void *handle, bend_fetch_rr *rr);

int (*bend_present) (void *handle, bend_present_rr *rr);
int (*bend_esrequest) (void *handle, bend_esrequest_rr *rr);
int (*bend_delete)(void *handle, bend_delete_rr *rr);

int (*bend_scan)(void *handle, bend_scan_rr *rr);

int (*bend_segment)(void *handle, bend_segment_rr *rr);

ODR decode; /* decoding stream */
/* character set and language negotiation - see include/yaz/z-charneg.h */
Z_CharSetandLanguageNegotiation *charneg_request;
Z_External *charneg_response;
} bend_initrequest;

typedef struct bend_initresult

{
int errcode; /* 0==0K */
char *errstring; /* system error string or NULL */
void *handle; [* private handle to the backend module */

} bend_initresult;

In general, the server frontend expects thatddred_*result pointer that you return is valid at least

until the next call to @end_* function . This applies to all of the functions described herein. The
parameter structure passed to you in the call belongs to the server frontend, and you should not make
assumptions about its contents after the current function call has completed. In other words, if you want
to retain any of the contents of a request structure, you should copy them.

Theerrcode should be zero if the initialization of the backend went well. Any other value will be
interpreted as an error. Tleerstring isn't used in the current version, but one option would be to stick

it in the initResponse as a VisibleString. Thendle is the most important parameter. It should be set to
some value that uniguely identifies the current session to the backend implementation. It is used by the
frontend server in any future calls to a backend function. The typical use is to set it to point to a
dynamically allocated state structure that is private to your backend module.

Theauth member holds the authentication information part of the Z39.50 Initialize Request. Interpret
this if your serves requires authentication.

26

Chapter 4. Generic server

The membergpeer_name , implementation_id , implementation_name and
implementation_version holds DNS of client, ID of implementor, name of client (239.50)
implementation - and version.

Thebend_ - members are set to NULL wherend_init is called. Modify the pointers by setting them
to point to backend functions.

Search and retrieve

We now describe the handlers that are required to support search - and retrieve. You must support two
functions - one for search - and one for fetch (retrieval of one record). If desirable you can provide a third
handler which is called when a present request is received which allows you to optimize retrieval of
multiple-records.

int (*bend_search) (void *handle, bend_search_rr *r);

typedef struct {

char *setname; [* name to give to this set */
int replace_set; /* replace set, if it already exists */
int num_bases; /* number of databases in list */
char **basenames; /* databases to search */
Z_Referenceld *referenceld;/* reference ID */

Z_Query *query; /* query structure */

ODR stream; [* encode stream */

ODR decode; /* decode stream */

ODR print; [* print stream */

bend_request request;
bend_association association;

int *fd;

int hits; /* number of hits */

int errcode; /* 0==0K */

char *errstring; [* system error string or NULL */

} bend_search_rr;

Thebend_search handler is a fairly close approximation of a protocol Z39.50 Search Request - and
Response PDUs Theetname is the resultSetName from the protocol. You are required to establish a
mapping between the set name and whatever your backend database likes to use. Similarly, the
replace_set is a boolean value corresponding to the resultSetindicator field in the protocol.
num_bases/basenames is a length of/array of character pointers to the database names provided by the
client. Thequery is the full query structure as defined in the protocol ASN.1 specification. It can be
either of the possible query types, and it’'s up to you to determine if you can handle the provided query
type. Rather than reproduce the C interface here, we’ll refer you to the structure definitions in the file
include/yaz/z-core.h . If you want to look at the attributeSetld OID of the RPN query, you can
either match it against your own internal tables, or you can useidhgetentbyoid function

provided by YAZ.

The structure contains a number of hits, anctawode/errstring pair. If an error occurs during the
search, or if you're unhappy with the request, you should set the errcode to a value from the BIB-1
diagnostic set. The value will then be returned to the user in a nonsurrogate diagnostic record in the

27

Chapter 4. Generic server

response. Therrstring , if provided, will go in the addinfo field. Look at the protocol definition for
the defined error codes, and the suggested uses of the addinfo field.

Thebend_search handler is also called when the frontend server receives a SRW/SRU
SearchRetrieveRequest. For SRW/SRU, a CQL query is usually provided by the client. The CQL query is
available as part af_Query structure (note that CQL is now part of Z39.50 via an external). To support
CQL in existing implementations that only do Type-1, we refer to the CQL-to-PQF tool destréned

To maintain backwards compatibility, the frontend server of yaz always assume that error codes are
BIB-1 diagnostics. For SRW/SRU operation, a Bib-1 diagnostic code is mapped to SRW/SRU diagnostic.

int (*bend_fetch) (void *handle, bend_fetch_rr *rr);

typedef struct bend_fetch_rr {
char *sethame; [* set name */
int number; /* record number */
Z_Referenceld *referenceld;/* reference ID */
oid_value request_format; /* One of the CLASS_RECSYN members */
int *request_format_raw; /* same as above (raw OID) */
Z_RecordComposition *comp; /* Formatting instructions */

ODR stream; [* encoding stream - memory source if req */
ODR print; [* printing stream */

char *basename; /* name of database that provided record */
int len; /* length of record or -1 if structured */
char *record,; [* record */

int last_in_set; [*is it? ¥/

oid_value output_format; /* format */

int *output_format_raw; [* used instead of above if not-null */

int errcode; /* 0==success */

char *errstring; [* system error string or NULL */

int surrogate_flag; /* surrogate diagnostic */

char *schema; [* string record schema input/output */

} bend_fetch_rr;

The frontend server calls thend_fetch handler when it needs database records to fulfill a Z39.50

Search Request, a Z39.50 Present Request or a SRW SearchRetrieveRequestaiiee is simply the

name of the result set that holds the reference to the desired recordurhher is the offset into the set

(with 1 being the first record in the set). Themat field is the record format requested by the client

(See sectio®bject Identifiers The valueVAL_NONENdicates that the client did not request a specific

format. Thestream argument is an ODR stream which should be used for allocating space for

structured data records. The stream will be reset when all records have been assembled, and the response
package has been transmitted. For unstructured data, the backend is responsible for maintaining a static
or dynamic buffer for the record between calls.

If a SRW/SRU SearchRetrieveRequest is received by the frontend servesffetkaceld is NULL
and therequest_format (transfer syntax) is XML (OID nam&AL_TEXT_XMi. The schema for
SRWY/SRU is stored in both the RecordComposition structure andchema (simple string).

In the structure, theasename is the name of the database that holds the redendis the length of the
record returned, in bytes, ametord is a pointer to the recordhast_in_set should be nonzero only if
the record returned is the last one in the given resulesebde anderrstring , if given, will be

28

Chapter 4. Generic server

interpreted as a global error pertaining to the set, and will be returned in a non-surrogate-diagnostic. If
you wish to return the error as a surrogate-diagnostic (local error) you can do this by setting
surrogate_flag to 1 also.

If the len field has the value -1, thercord is assumed to point to a constructed data type. The
format field will be used to determine which encoder should be used to serialize the data.

Note: If your backend generates structured records, it should use odr_malloc() on the provided
stream for allocating data: This allows the frontend server to keep track of the record sizes.
Theformat field is mapped to an object identifier in the direct reference of the resulting EXTERNAL

representation of the record.

Note: The current version of YAZ only supports the direct reference mode.

int (*bend_present) (void *handle, bend_present_rr *rr);

typedef struct {

char *setname; /* set name */

int start;

int number; /* record number */

oid_value format; /* One of the CLASS_RECSYN members */

Z_Referenceld *referenceld;/* reference ID */
Z_RecordComposition *comp; /* Formatting instructions */
ODR stream; [* encoding stream */
ODR print; [* printing stream */
bend_request request;

bend_association association;

int hits; /* number of hits */
int errcode; [* 0==0K */
char *errstring; [* system error string or NULL */

} bend_present_rr;

Thebend_present handler is called when the server receives a Z39.50 Present Requestiriamee ,

start andnumber is the name of the result set - start position - and number of records to be retrieved
respectivelyformat andcomp is the preferred transfer syntax and element specifications of the present
request.

Note that this is handler serves as a supplemeridnd_fetch and need not to be defined in order to
support search - and retrieve.

Delete

For back-ends that supports delete of a result set only one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

29

Chapter 4. Generic server

typedef struct bend_delete_rr {
int function;
int num_setnames;
char **setnames;
Z_Referenceld *referenceld;

int delete_status; [* status for the whole operation */

int *statuses; /* status each set - indexed as setnames */
ODR stream;

ODR print;

} bend_delete_rr;

Note: The delete set function definition is rather primitive, mostly because we have had no practical
need for it as of yet. If someone wants to provide a full delete service, we'd be happy to add the extra
parameters that are required. Are there clients out there that will actually delete sets they no longer
need?

scan

For servers that wish to offer the scan service one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

typedef enum {

BEND_SCAN_SUCCESS, /* ok */

BEND_SCAN_PARTIAL /* not all entries could be found */
} bend_scan_status;

typedef struct bend_scan_rr {
int num_bases; /* number of elements in database list */
char **basenames; [* databases to search */
oid_value attributeset;
Z_Referenceld *referenceld; /* reference ID */
Z_AttributesPlusTerm *term;

ODR stream; [* encoding stream - memory source if required */
ODR print; [* printing stream */

int *step_size; [* step size */

int term_position; /* desired index of term in result list/returned */

int num_entries; /* number of entries requested/returned */

struct scan_entry *entries;
bend_scan_status status;
int errcode;
char *errstring;

} bend_scan_rr;

30

Chapter 4. Generic server

Application Invocation

The finished application has the following invocation syntax (by wastatberv_main()):

appname [-a file][-v level J[-I file][-u uid][-c config][-t minutes]
[-k kilobytes][-d daemon][-w dir][-ziST1] [listener-spec...]

The options are:

-a file
Specify a file for dumping PDUs (for diagnostic purposes). The special ngaesh) sends output
to stderr

-S

Don't fork or make threads on connection requests. This is good for debugging, but not
recommended for real operation: Although the server is asynchronous and non-blocking, it can be
nice to keep a software malfunction (okay then, a crash) from affecting all current users.

Like -S but after one session the server exits. This mode is for debuggiypg

Operate the server in threaded mode. The server creates a thread for each connection rather than a
fork a process. Only available on UNIX systems that offers POSIX threads.

Use the SR protocol (obsolete).

-Z
Use the 239.50 protocol (default). This option asdcomplement each other. You can use both
multiple times on the same command line, between listener-specifications (see below). This way,
you can set up the server to listen for connections in both protocols concurrently, on different local
ports.

-1 file

The logfile.

-c config

A user option that serves as a specifier for some sort of configuration, usually a filename. The
argument to this option is transferred to memémifigname of thestatserv_options_block

-v level

The log level. Use a comma-separated list of members of the set
{fatal,debug,warn,log,malloc,all,none}.

31

Chapter 4. Generic server

-u uid
Set user ID. Sets the real UID of the server process to that of the given user. It's useful if you aren’t
comfortable with having the server run as root, but you need to start it as such to bind a privileged
port.

-w dir
The server changes to this directory during before listening on incoming connections. This option
is useful when the server is operating from the inetd daemoni(gee

-i
Use this to make the the server run from the inetd server (UNIX only).

-install
Use this to install the server as an NT service (Windows 2000/NT only). Control the server by
going to the Services in the Control Panel.

-remove
Use this to remove the server from the NT services (Windows 2000/NT only).

-t minutes
Idle session timeout, in minutes.

-k size
Maximum record size/message size, in kilobytes.

-d daemon

Set name of daemon to be used in hosts access file. See hosts_access(5) and tcpd(8).

A listener specification consists of a transport mode followed by a colon (;) followed by a listener
address. The transport mode is eittor, unix: orssl .

For TCP and SSL, an address has the form

hostname | IP-number [portnumber]

The port number defaults to 210 (standard 239.50 port).
For UNIX, the address is the filename of socket.

For TCP/IP and SSL, the special hosthame "@" is mapped to the addAEBR_ANY which causes the
server to listen on any local interface.

Examples:
tcp:@:210

ssl:@:3000

32

Chapter 4. Generic server

unix:/tmplyaz

33

Chapter 5. The YAZ client

Introduction

yaz-client is a line-mode Z39.50/SRW client. It supports a fair amount of the functionality of the
Z39.50v3 standard. Its primary purpose is to exercise the package, and verify that the protocol works
OK. For the same reason some commands offers more functionality than others. Commands that
exercises common Z39.50 services such as search and present have more features than less common
supported services, such as Extended Services (ItemOrder, ItemUpdate,..).

Invoking the YAZ client

-m fname

-a fname

-c fname

-qg fname

-v level

It can be started by typing

yaz-client [-m fname] [-a fname] [-c fname] [-q fname] [-v level][-p target][-u auth][-k
size][zurl]

in a UNIX shell / WIN32 console. Theurl , specifies a Z39.50/SRW host and, if specified, the client
first tries to establish connection with the Z39.50/SRW target.
Options are prefixed by followed by a particular letter.

The following options are supported:

All retrieved transfer records are appended toffieme . All records as returned by a target(s) in
Search Responses and Present Responses are appended verbatim to the file.

Pretty-print log of APDUs sent and received is appended to thénfilme . If fname is- (minus)
the APDU log is written tastderr

Sets the filename for CCL fields foame . If this option is not given the YAZ client reads CCL
fields from filedefault.bib

Sets the filename for CQL fields tname . If this option is not given the YAZ client reads CQL
fields from file/usr/local/sharelyaz/etc/pgf.properties

Sets the LOG level ttevel . Level is a sequence of tokens separated by comma. Each token is a
integer or a named LOG item - onefafal , debug, warn, log , malloc , all , none.

34

-p target

-u auth

-k size

Chapter 5. The YAZ client

Specifies proxy address. When set YAZ client will connect to a proxy on the address and port given.
The actual target will be specified as part of the InitRequest to inform the proxy about actual target.

Specifies authentication. Usually the fouser /password is used. This option does the same
thing as theauth command.

Specifies the maximum messages size in kilobytes. The default maximum message size for the YAZ
clientis 1024 (1 MB).

In order to connect to Index Data’s test Z39.50 servebamel.indexdata.dk , port 210 and with the
database namearc, one could type

yaz-client bagel.indexdata.dk:210/marc

The same server is also a SOAP SRW service. Connect to it via HTTP as follows:

yaz-client http://bagel.indexdata.dk:210/marc

In order to enable APDU log and connect to localhost, port 210 (default) and database Default (default)
you'd write:

yaz-client -a - localhost

The following command connects to a local server via UNIX sottkgi/yaz and sets maximum
message size to 5 MB.

yaz-client -k 5120 unix:/tmpl/yaz

Commands

When the YAZ client has read options and connected to a target, if given, it will digplapd await
your command. Commands are executed by hitting the return key. You can always issue the c@dmmand
to see the list of available commands.

The commands are (the letters in parenthesis are short names for the commands):

35

Chapter 5. The YAZ client

open zurl
Opens a connection to a server. The syntaxfot is the same as described above for connecting
from the command line.
Syntax:
[(tcp|ssl|unix|http)”:’ Jhost [:port][/base]
quit
Quits YAZ client
f query

Sends a Search Request usingdhery given.

delete setname

Deletes result set with nansetname on the server.

base basel base2

Sets the name(s) of the database(s) to search. One or more databases may be specified separated by
blanks. This commands overrides the database giveurin .

show [start [+number]]

Fetches records by sending a Present Request from the start position gatantby a number of
records given bywumber . If start is not given, then the client will fetch from position of the last
retrieved record plus 1. Humber is not given, then one record will be fetched at a time.

scan term

Scans database index for a term. The syntax resembles the synfiax forf you want to scan for
the wordwater you could write

scan water

but if you want to scan only in, say the title field, you would write

scan @attr 1=4 water

sort sortspecs

Sorts a result set. The sort command takes a sequence of sort specifications. A sort specification
holds a field (sort criteria) and is followed by flags. If the sort criteria includi¢ss assumed that

the sort SortKey is of type sortAttributes using Bib-1. The integer befdsehe attribute type and

the integer following= is the attribute value. If ne is in the SortKey it is treated as a sortfield-type
of type InternationalString. Flags observed aréor case sensitive, for case insensitives for sort
ascending and for sort descending.

36

sort+

authentication

Islb n

ssub n

mspn N

status

setname

cancel

format oid

elements e

close

Chapter 5. The YAZ client

Same asort but stores the sorted result set in a new result set.

openauth

Sets up a authentication string if a server requires authentication (v2 OpenStyle). The authentication
string is first sent to the server when thygen command is issued and the Z239.50 Initialize Request

is sent, so this command must be used befpem in order to be effective. A common convention

for theauthopen string is that the username - and password is separated by a slash, e.g.
myusername/mysecret

Sets the limit for when no records should be returned together with the search result. See the
Z39.50 standard (http://lcweb.loc.gov/z3950/agency/markup/04.htmi#3.2.2.1.6) for more details.

Sets the limit for when all records should be returned with the search result. See the Z39.50
standard (http://Icweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

Sets the number of records should be returned if the number of records in the result set is between
the values ofslb andssub . See the Z39.50 standard
(http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

Displays the values alb

, ssub andmspn.

Switches named result sets on and off. Default is on.

Sends a Trigger Resource Control Request to the target.

Sets the preferred transfer syntax for retrieved records. yaz-client supports all the record syntaxes
that currently are registered. See 7239.50 Standard
(http://lcweb.loc.gov/z3950/agency/defns/oids.html#5) for more details. Commonly used records
syntaxes include usmarc, sutrs, grs1 and xml.

Sets the element set name for the records. Many targets support element sets are B (for brief) and F
(for full).

Sends a Z39.50 Close APDU and closes connection with the peer

37

Chapter 5. The YAZ client

querytype type

attributeset

refid id

Sets the query type as used by commtémtl . The following is supportedirefix ~ for Prefix
Query Notation(Type-1 Query)gcl for CCL search (Type-2 Querygl for CQL (Type-104
search with CQL OID)¢cl2rpn for CCL to RPN conversion (Type-1 Queryxl2rpn for CQL
to RPN conversion (Type-1 Query).

set

Sets attribute set OID for prefix queries (RPN, Type-1).

Sets reference ID for Z39.50 Request(s).

itemorder type no

update

. filename

I args

Sends an Item Order Request using the ILL Extertyple is either 1 or 2 which corresponds to
ILL-Profile 1 and 2 respectively. Thao is the Result Set position of the record to be ordered.

Sends Item Update Request. This command sends a "minimal" PDU Update to the target supplying
the last received record from the target. If no record has been received from the target this command
is ignored and nothing is sent to the target.

Executes list of commands from fifdlename , just like source on most UNIX shells.

Executes commanargs in subshell using theystem call.

push_commande command

set_apdufile

set_marcdump

The push_command takes another command as its argument. That command is then added to the
history information (so you can retrieve it later). The command itself is not executed. This
command only works if you have GNU readline/history enabled.

filename

Sets that APDU should be logged to filkname . This command does the thing as optian

filename

Specifies that all retrieved records should be appended dtdilmme . This command does the
thing as optionm.

schema schemaid

Specifies schema for retrieval. Schema may be specified as an OID for Z39.50. For SRW, schema is
a simple string URI.

charset negotiationcharset [outputcharset]

Specifies character set (encoding) for Z39.50 negotiation / SRW encoding and/or character set for
output (terminal).

38

Chapter 5. The YAZ client

negotiationcharset is the name of the character set to be negotiated by the server. The
special name for negotiationcharset specifiesno character set to be negotiated.

If outputcharset is given, it specifies name of the character set of the output (on the terminal
on which YAZ client is running). To disable conversion of characters to the output encoding, the
special name (dash) can be used. If the special naam® is given, YAZ client will convert

strings to the encoding of the terminal as returnedlbianginfo call.

Note: Since character set negotation takes effect in the 239.50 Initialize Request you should
issue this command before command open is used.

Note: MARC records are not covered by Z39.50 character set negotiation. See marccharset

marccharset charset

set_cclfields

set_cqlfields

register_oid

Searching

Specifies character set for retrieved MARC records so that YAZ client can display them in a
character suitable for your display. Serarset command. lfauto is given, YAZ will assume that
MARC21/USMARC is using MARC8/UTF8 and 1SO-8859-1 for all other MARC variants.

filename
Specifies that CCL fields should be read from file filename . This command does the thing as
option-c .

filename
Specifies that CQL fields should be read from file filename . This command does the thing as
option-q .
name class OID

This command allows you to register your own object identifier - so that instead of entering a long
dot-notation you can use a short name instead.néme is your name for the OlDglass is the

class, andID is the raw OID in dot notation. Class is oagpctx , absyn , attet , transyn

diagset ,recsyn ,resform ,accform ,extserv ,userinfo ,elemspec ,varset ,schema,

tagset , general . If you're in doubt use thgeneral class.

The simplest example of a Prefix Query would be something like

or

f knuth

f "donald knuth"

39

Chapter 5. The YAZ client

In those queries no attributes was specified. This leaves it up to the server what fields to search but most
servers will search in all fields. Some servers does not support this feature though, and require that some
attributes are defined. To add one attribute you could do:

f @attr 1=4 computer
where we search in the title field, since the use(1) is title(4). If we want to search in the authanfield
in the title field, and in the title field using right truncation it could look something like this:

f @and @attr 1=1003 knuth @attr 1=4 @attr 5=1 computer

Finally using a mix of Bib-1 and GILS attributes could look something like this:

f @attrset Bib-1 @and @attr GILS 1=2008 Washington @attr 1=21 weather

For the full specification of the Prefix Query see the sedBoefix Query Format

40

Chapter 6. The Z39.50 ASN.1 Module

Introduction

The Z239.50 ASN.1 module provides you with a set of C struct definitions for the various PDUs of the
Z39.50 protocol, as well as for the complex types appearing within the PDUs. For the primitive data
types, the C representation often takes the form of an ordinary C language type, suchBsr ASN.1
constructs that have no direct representation in C, such as general octet strings and bit strings, the ODR
module (see sectiohhe ODR Modulé provides auxiliary definitions.

The Z239.50 ASN.1 module is located in sub directz89.50 . There you'll find C files that implements
encoders and decoders for the Z39.50 types. You'll also find the protocol definii@3ev3.asn
esupdate.asn , and others.

Preparing PDUs

A structure representing a complex ASN.1 type doesn't in itself contain the members of that type.
Instead, the structure contaipsintersto the members of the type. This is necessary, in part, to allow a
mechanism for specifying which of the optional structure (SEQUENCE) members are present, and
which are not. It follows that you will need to somehow provide space for the individual members of the
structure, and set the pointers to refer to the members.

The conversion routines don't care how you allocate and maintain your C structures - they just follow the
pointers that you provide. Depending on the complexity of your application, and your personal taste,
there are at least three different approaches that you may take when you allocate the structures.

You can use static or automatic local variables in the function that prepares the PDU. This is a simple
approach, and it provides the most efficient form of memory management. While it works well for flat
PDU:s like the InitRegest, it will generally not be sufficient for say, the generation of an arbitrarily
complex RPN query structure.

You can individually create the structure and its members usinméfiec(2) function. If you want to
ensure that the data is freed when it is no longer needed, you will have to define a function that
individually releases each member of a structure before freeing the structure itself.

You can use thedr_malloc() function (see sectiobdsing ODRfor details). When you use
odr_malloc() , you can release all of the allocated data in a single operation, independent of any
pointers and relations between the dati. malloc() is based on a "nibble-memory" scheme, in
which large portions of memory are allocated, and then gradually handed out with each call to
odr_malloc() . The nexttime you calbdr_reset() , all of the memory allocated since the last call is
recycled for future use (actually, it is placed on a free-list).

You can combine all of the methods described here. This will often be the most practical approach. For
instance, you might usair_malloc() to allocate an entire structure and some of its elements, while
you leave other elements pointing to global or per-session default variables.

The Z39.50 ASN.1 module provides an important aid in creating new PDUs. For each of the PDU types
(say,Z_InitRequest), a function is provided that allocates and initializes an instance of that PDU type
for you. In the case of the InitRequest, the function is simply nanged InitRequest() , and it sets

up reasonable default value for all of the mandatory members. The optional members are generally

41

Chapter 6. The 239.50 ASN.1 Module

initialized to null pointers. This last aspect is very important: it ensures that if the PDU definitions are
extended after you finish your implementation (to accommodate new versions of the protocol, say), you
won't get into trouble with uninitialized pointers in your structures. The functionsdsenalloc() to
allocate the PDUs and its members, so you can free everything again with a singleodaliéset()

We strongly recommend that you use tiyet * functions whenever you are preparing a PDU (in a

C++ API, thezget_ functions would probably be promoted to constructors for the individual types).

The prototype for the individual PDU types generally look like this:

Z_<type> *zget_<type>(ODR 0);

eg.:

Z_InitRequest *zget_InitRequest(ODR 0);

The ODR handle should generally be your encoding stream, but it needn’t be.

As well as the individual PDU functions, a functiaget APDU() is provided, which allocates a
top-level Z-APDU of the type requested:

Z_APDU *zget APDU(ODR o, int which);

Thewhich parameter is (of course) the discriminator belonging tazthePDU CHOICRype. All of the
interface described here is provided by the Z39.50 ASN.1 module, and you access it through the
proto.h header file.

Object Identifiers

When you refer to object identifiers in your application, you need to be aware that SR and Z39.50 use
two different set of OIDs to refer to the same objects. To handle this easily, YAZ provides a utility
module to Z39.50 ASN.1 which provides an internal representation of the OIDs used in both protocols.
Each oid is described by a structure:

typedef struct oident
{

enum oid_proto proto;
enum oid_class class;
enum oid_value value;
int oidsuffix[OID_SIZE];
char *desc;

} oident;

Theproto field can be set to eith@ROTO_SRr PROTO_Z3950 Theclass might be, say,
CLASS_RECSYNand thevalue might bevAL_USMARdor the USMARC record format. Functions

int *oid_ent_to_oid(struct oident *ent, int *dst);
struct oident *oid_getentbyoid(int *o);

42

Chapter 6. The 239.50 ASN.1 Module

are provided to map between object identifiers and database entries. If you store a member of the
oid_proto type in your association state information, it's a simple matter, at runtime, to generate the
correct OID when you need it. For decoding, you can simply ignore the proto field, or if you're strict,
you can verify that your peer is using the OID family from the correct protocol.deke field is a short,
human-readable name for the PDU, useful mainly for diagnostic output.

Note: The old function oid_getoidbyent still exists but is not thread safe. Use oid_ent_to_oid
instead and pass an array of size OID_SIZE .

Note: Plans are underway to merge the two protocols into a single definition, with one set of object
identifiers. When this happens, the oid module will no longer be required to support protocol
independence, but it should still be useful as a simple OID database.

EXTERNAL Data

In order to achieve extensibility and adaptability to different application domains, the new version of the
protocol defines many structures outside of the main ASN.1 specification, referencing them through
ASN.1 EXTERNAL constructs. To simplify the construction and access to the externally referenced
data, the Z39.50 ASN.1 module defines a specialized version of the EXTERNAL construct, called

Z External .ltis defined thus:

typedef struct Z_External
{
Odr_oid *direct_reference;
int *indirect_reference;
char *descriptor;
enum
{
[* Generic types */
Z_External_single = 0,
Z_External_octet,
Z_External_arbitrary,

[* Specific types */

Z External_SUTRS,
Z_External_explainRecord,
Z_External_resourceReport1,
Z_External_resourceReport2

} which;
union

{
/* Generic types */
Odr_any *single_ASN1_type;

43

Chapter 6. The 239.50 ASN.1 Module

Odr_oct *octet_aligned;
Odr_bitmask *arbitrary;

[* Specific types */

Z_SUTRS *sutrs;

Z_ExplainRecord *explainRecord;
Z_ResourceReportl *resourceReportl;
Z_ResourceReport2 *resourceReport2;

P
} Z_External;

When decoding, the Z39.50 ASN.1 module will attempt to determine which syntax describes the data by
looking at the reference fields (currently only the direct-reference). For ASN.1 structured data, you need
only consult thewhich field to determine the type of data. You can the access the data directly through

the union. When constructing data for encoding, you set the union pointer to point to the data, and set the
which field accordingly. Remember also to set the direct (or indirect) reference to the correct OID for

the data type. For non-ASN.1 data such as MARC records, usetidtealigned arm of the union.

Some servers return ASN.1 structured data values (eg. database records) as BER-encoded records placed
in the octet-aligned branch of the EXTERNAL CHOICE. The ASN-module wilbt automatically
decode these records. To help you decode the records in the application, the function

Z_ext_typeent *z_ext_gettypebyref(oid_value ref);

Can be used to retrieve information about the known, external data types. The function return a pointer to
a static area, or NULL, if no match for the given direct reference is foundZTbgt_typeent is
defined as:

typedef struct Z_ext_typeent

{
oid_value dref; /* the direct-reference OID value. */
int what; /* discriminator value for the external CHOICE */
Odr_fun fun; /* decoder function */

} Z_ext_typeent;

Thewhat member contains the External union discriminator value for the given type: For the
SUTRS record syntax, the value would beExternal_sutrs . Thefun member contains a pointer to
the function which encodes/decodes the given type. Again, for the SUTRS record syntax, the value of
fun would bez_SUTRS(a function pointer).

If you receive an EXTERNAL which contains an octet-string value that you suspect of being an
ASN.1-structured data value, you can usext_gettypebyref to look for the provided

direct-reference. If the return value is different from NULL, you can use the provided function to decode
the BER string (see sectiodsing ODR).

44

Chapter 6. The 239.50 ASN.1 Module

If you want tosendEXTERNALSs containing ASN.1-structured values in the occtet-aligned branch of the
CHOICE, this is possible too. However, on the encoding phase, it requires a somewhat involved juggling
around of the various buffers involved.

If you need to add new, externally defined data types, you must update the struct above, in the source file
prt-exth , as well as the encoder/decoder in thefiteext.c . When changing the latter, remember

to update both tharm arrary and the listype _table , which drives the CHOICE biasing that is

necessary to tell the different, structured types apart on decoding.

Note: Eventually, the EXTERNAL processing will most likely automatically insert the correct OIDs or
indirect-refs. First, however, we need to determine how application-context management (specifically
the presentation-context-list) should fit into the various modules.

PDU Contents Table

We include, for reference, a listing of the fields of each top-level PDU, as well as their default settings.

Table 6-1. Default settings for PDU Initialize Request

Field Type Default Value
referenceld Z_Referenceld NULL
protocolVersion Odr_bitmask Empty bitmask
options Odr_bitmask Empty bitmask
preferredMessageSize int 30*1024
maximumRecordSize int 30*1024
idAuthentication Z_IdAuthentication NULL
implementationld char* "81"
implementationName char* "YAZ"
implementationVersion char* YAZ_VERSION
userinformationField Z_UserInformation NULL
otherinfo Z_OtherInformation NULL

Table 6-2. Default settings for PDU Initialize Response

Field Type Default Value
referenceld Z_Referenceld NULL
protocolVersion Odr_bitmask Empty bitmask
options Odr_bitmask Empty bitmask
preferredMessageSize int 30*1024
maximumRecordSize int 30*1024

result bool_t TRUE
implementationld char* "id)"

45

Chapter 6. The 239.50 ASN.1 Module

Field Type
implementationName char*
implementationVersion char*

userinformationField
otherinfo

Z_UserInformation
Z_Otherinformation

Table 6-3. Default settings for PDU Search Request

Default Value
"YAZ"
YAZ_VERSION

NULL
NULL

Default Value

Field Type
referenceld Z Referenceld
smallSetUpperBound int
largeSetLowerBound int
mediumSetPresentNumber int
replacelndicator bool_t
resultSetName char *
num_databaseNames int
databaseNames char **

smallSetElementSetNames
mediumSetElementSetNames

preferredRecordSyntax Odr_oid

query Z_Query
additionalSearchinfo Z_OtherInformation
otherinfo Z_OtherInformation

Table 6-4. Default settings for PDU Search Response

Z_ElementSetNames
Z_ElementSetNames

NULL
0
1
0
TRUE
"default”
0
NULL
NULL
NULL
NULL
NULL
NULL
NULL

Field Type Default Value
referenceld Z_Referenceld NULL
resultCount int 0
numberOfRecordsReturned int 0
nextResultSetPosition int 0
searchStatus bool_t TRUE
resultSetStatus int NULL
presentStatus int NULL
records Z_Records NULL
additionalSearchinfo Z_Otherinformation NULL
otherlinfo Z_OtherInformation NULL

Table 6-5. Default settings for PDU Present Request

Field Type

Default Value

46

Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value
referenceld Z_Referenceld NULL
resultSetld char* "default"
resultSetStartPoint int 1
numberOfRecordsRequested int 10
num_ranges int 0
additionalRanges Z_Range NULL
recordComposition Z_RecordComposition NULL
preferredRecordSyntax Odr_oid NULL
maxSegmentCount int NULL
maxRecordSize int NULL
maxSegmentSize int NULL
otherinfo Z_OtherInformation NULL

Table 6-6. Default settings for PDU Present Response

Field Type Default Value
referenceld Z_Referenceld NULL
numberOfRecordsReturned int 0
nextResultSetPosition int 0

presentStatus int Z PRES _SUCCESS
records Z_Records NULL

otherinfo Z_OtherInformation NULL

Table 6-7. Default settings for Delete Result Set Request

Field Type Default Value
referenceld Z_Referenceld NULL
deleteFunction int Z_DeleteRequest_list
num_ids int 0

resultSetList char** NULL

otherlinfo Z_OtherInformation NULL

Table 6-8. Default settings for Delete Result Set Response

Field

Type

Default Value

referenceld
deleteOperationStatus
num_statuses
deleteListStatuses
numberNotDeleted

Z_Referenceld
int
int
Z_ListStatus**
int

NULL

Z_ DeleteStatus_success
0

NULL
NULL

47

Chapter 6. The 239.50 ASN.1 Module

Field

num_bulkStatuses

bulkStatuses
deleteMessage
otherinfo

Type

int

Z_ListStatus

char*
Z_Otherinformation

Table 6-9. Default settings for Scan Request

Default Value
0
NUL L
NULL
NULL

Default Value

Field Type

referenceld Z Referenceld
num_databaseNames int
databaseNames char**
attributeSet Odr_oid
termListAndStartPoint Z_AttributesPlus...
stepSize int
numberOfTermsRequested int
preferredPositioninResponse int

otherinfo Z_OtherInformation

Table 6-10. Default settings for Scan Response

NULL
0
NULL
NULL
NULL
NULL
20
NULL
NULL

Field Type Default Value
referenceld Z_Referenceld NULL

stepSize int NULL
scanStatus int Z_Scan_success
numberOfEntriesReturned int 0
positionOfTerm int NULL

entries Z_ListEntris NULL
attributeSet Odr_oid NULL

otherinfo Z_Otherinformation NULL

Table 6-11. Default settings for Trigger Resource Control Request

Field Type Default Value

referenceld Z Referenceld NULL

requestedAction int Z_TriggerResourceCtrl_resou..
prefResourceReportFormat Odr_oid NULL

resultSetWanted bool_t NULL

otherinfo Z_Otherinformation NULL

48

Table 6-12. Default settings for Resource Control Request

Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value
referenceld Z_Referenceld NULL
suspendedFlag bool_t NULL
resourceReport Z_External NULL
partialResultsAvailable int NULL
responseRequired bool_t FALSE
triggeredRequestFlag bool_t NULL
otherlinfo Z_OtherInformation NULL

Table 6-13. Default settings for Resource Control Response

Field Type Default Value
referenceld Z_Referenceld NULL
continueFlag bool_t TRUE
resultSetWanted bool_t NULL
otherlinfo Z_OtherInformation NULL

Table 6-14. Default settings for Access Control Request

Field Type Default Value

referenceld Z_Referenceld NULL

which enum Z_AccessRequest_simpleForm;
u union NULL

otherinfo Z_Otherinformation NULL

Table 6-15. Default settings for Access Control Response

Field Type Default Value

referenceld Z Referenceld NULL

which enum Z_AccessResponse_simpleForm
u union NULL

diagnostic Z DiagRec NULL

otherinfo Z_Otherinformation NULL

Table 6-16. Default settings for Segment

Field Type Default Value
referenceld Z_ Referenceld NULL
numberOfRecordsReturned int value=0
num_segmentRecords int 0

49

Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value
segmentRecords Z_NamePlusRecord NULL
otherinfo Z_OtherInformation NULL

Table 6-17. Default settings for Close

Field Type Default Value
referenceld Z_Referenceld NULL
closeReason int Z_Close_finished
diagnosticinformation char* NULL
resourceReportFormat Odr_oid NULL
resourceFormat Z_External NULL

otherlinfo Z_OtherInformation NULL

50

Chapter 7. SOAP and SRW

Introduction

HTTP

YAZ uses a very simple implementation of SOAP that only, currenly, supports what is sufficient to offer
SRW functionality. The implementation uses the tree API
(http://www.xmlisoft.org/html/libxmi-tree.html) of libxml2 to encode and decode SOAP packages.

Like the Z39.50 ASN.1 module, the YAZ SRW implementation uses simple C structs to represent SOAP
packages as well as HTTP packages.

YAZ only offers HTTP as transport carrier for SOAP, but it is relatively easy to change that.
The following definition ofz_GDU(Generic Data Unit) allows for both HTTP and Z39.50 in one packet.

#include <yaz/zgdu.h>

#define Z_GDU_Z3950 1
#define Z_GDU_HTTP_Request 2
#define Z_GDU_HTTP_Response 3
typedef struct {
int which;
union {
Z_APDU *z3950;
Z_HTTP_Request *HTTP_Request;
Z HTTP_Response *HTTP_Response;
}ou
} Z_GDU ;

The corresponding Z_GDU encoder/decoder DU Thez3950 is any of the known BER encoded
Z39.50 APDUSHTTP_Request andHTTP_Response is the HTTP Request and Response respectively.

SOAP Packages

Every SOAP package in YAZ is represented as follows:

#include <yaz/soap.h>

typedef struct {
char *fault_code;
char *fault_string;
char *details;

} Z_SOAP_Fault;

typedef struct {
int no;

51

Chapter 7. SOAP and SRW

char *ns;
void *p;
} Z_SOAP_Generic;

#define Z_SOAP_fault 1
#define Z_SOAP_generic 2
#define Z_SOAP_error 3
typedef struct {
int which;
union {
Z SOAP_Fault *fault;
Z_SOAP_Generic *generic;
Z_SOAP_Fault *soap_error;
}ou
const char *ns;
} Z_SOAP;

Thefault andsoap_error arms represent both a SOAP fault - stracSOAP_Fault . Any other
generic (valid) package is representedzbgOAP_Generic .

Thens as part ofz_SOAPis the namespace for SOAP itself and reflects the SOAP version. For version
1.1 it ishttp://schemas.xmlsoap.org/soap/envelope/ , for version 1.2 it is
http://www.w3.0rg/2001/06/soap-envelope

int z_soap_codec(ODR 0, Z_SOAP **pp,
char **content_buf, int *content_len,
Z_SOAP_Handler *handlers);

Thecontent_buf andcontent_len is XML buffer and length of buffer respectively.

Thehandlers is a list of SOAP codec handlers - one handler for each service namespace. For SRW, the
namespace would betp://www.loc.gov/zing/srw/v1.0/

When decoding, the_soap_codec inspects the XML content and tries to match one of the services
namespaces of the supplied handlers. If there is a match a handler function is invoked which decodes that
particular SOAP package. If successful, the retuhestoAPpackage will be of typ& SOAP_Generic .
Membermno is set the offset of handler that matched;is set to namespace of matching handler; the

void pointerp is set to the C data structure assocatiated with the handler.

When a NULL namespace is met (memhberbwlow), that specifies end-of-list.

Each handler is defined as follows:

typedef struct {
char *ns;
void *client_data;
Z SOAP_fun f;
} Z_SOAP_Handler;

52

SRW

Chapter 7. SOAP and SRW

Thens is namespace of service associated with harfdlelient_data is user-defined data which is
passed to handler.

The prototype for a SOAP service handler is:

int handler(ODR o, void * ptr, void **handler_data,
void *client_data, const char *ns);

Theo specifies the mode (decode/encode) as usual. The second argptmerig a libxmlI2 tree node
pointer kmINodePtr) and is a pointer to thBody element of the SOAP package. Thandler_data

is an opaque pointer to a C definitions associated with the SOAP serhiard. data is the pointer
which was set as part of thie SOAP_handler . Finally, ns the service namespace.

SRW is just one implementation of a SOAP handler as described in the previous section. The
encoder/decoder handler for SRW is defined as follows:

#include <yaz/srw.h>

int yaz_srw_codec(ODR o, void * pptr,
Z SRW_GDU **handler_data,
void *client_data, const char *ns);

Here,Zz_SRW_GDIs either searchRetrieverequest or a searchRetrieveResponse.

Note: The xQuery and xSortKeys are not handled yet by the SRW implementation of YAZ. Explain is
also missing. Future versions of YAZ will include these features.

The definition of searchRetrieveRequest is:
typedef struct {

#define Z_SRW_query_type _cql 1
#define Z_SRW_query_type_xcql 2
#define Z_SRW_query_type_pqgf 3
int query_type;
union {
char *cql;
char *xcql;
char *pqf;
} query;

#define Z_SRW_sort_type_none 1
#define Z_SRW_sort_type_sort 2
#define Z_SRW_sort_type_xSort 3
int sort_type;
union {

53

Chapter 7. SOAP and SRW

char *none;
char *sortKeys;
char *xSortKeys;
} sort;
int *startRecord;
int *maximumRecords;
char *recordSchema;
char *recordPacking;
char *database;
} Z_SRW_searchRetrieveRequest;

Please observe that data of type xsd:string is represented as a char patter {. A null pointer
means that the element is absent. Data of type xsd:integer is representd as a pointer totah int (
Again, a null pointer us used for absent elements.

The SearchRetrieveResponse has the following definition.

typedef struct {
int * numberOfRecords;
char * resultSetld;
int * resultSetldleTime;

Z SRW record *records;
int num_records;

Z_ SRW_diagnostic *diagnostics;
int num_diagnostics;
int *nextRecordPosition;

} Z_SRW_searchRetrieveResponse;

Thenum_records andnum_diagnostics is number of returned records and diagnostics respectively
and also correspond to the "size of" arragtsords anddiagnostics

A retrieval record is defined as follows:

typedef struct {
char *recordSchema;
char *recordData_buf;
int recordData_len;
int *recordPosition;

} Z_SRW._record,

The record data is defined as a buffer of some length so that data can be of any type. SRW 1.0 currenly
doesn't allow for this (only XML), but future versions might do.

And, a diagnostic as:
typedef struct {

int *code;

char *details;
} Z_SRW._diagnostic;

54

Chapter 7. SOAP and SRW

55

Chapter 8. Supporting Tools

In support of the service API - primarily the ASN module, which provides the pro-grammatic interface to
the Z239.50 APDUSs, YAZ contains a collection of tools that support the development of applications.

Query Syntax Parsers

Since the type-1 (RPN) query structure has no direct, useful string representation, every origin
application needs to provide some form of mapping from a local query notation or representation to a
Z_RPNQuery structure. Some programmers will prefer to construct the query manually, perhaps using
odr_malloc() to simplify memory management. The YAZ distribution includes three separate,
guery-generating tools that may be of use to you.

Prefix Query Format

Since RPN or reverse polish notation is really just a fancy way of describing a suffix notation format
(operator follows operands), it would seem that the confusion is total when we now introduce a prefix
notation for RPN. The reason is one of simple laziness - it's somewhat simpler to interpret a prefix
format, and this utility was designed for maximum simplicity, to provide a baseline representation for
use in simple test applications and scripting environments (like Tcl). The demonstration client included
with YAZ uses the PQF.

Note: The PQF have been adopted by other parties developing Z39.50 software. It is often referred
to as Prefix Query Notation - PQN.

The PQF is defined by the pquery module in the YAZ library. There are two sets of function that have
similar behavior. First set operates on a PQF parser handle, second set doesn't. First set set of functions
are more flexible than the second set. Second set is obsolete and is only provided to ensure backwards
compatibility.

First set of functions all operate on a PQF parser handle:
#include <yaz/pquery.h>
YAZ_PQF_Parser yaz_pqf create (void);
void yaz_pqf destroy (YAZ_PQF_Parser p);
Z_RPNQuery *yaz_pqf_parse (YAZ_PQF_Parser p, ODR o, const char *qbuf);
Z_AttributesPlusTerm *yaz_pqf_scan (YAZ_PQF_Parser p, ODR o,

Odr_oid **attributeSetld, const char *gbuf);

int yaz_pqf_error (YAZ_PQF_Parser p, const char **msg, size_t *off);

56

Chapter 8. Supporting Tools

A PQF parser is created and destructed by functjanspgf_create andyaz_pqf destroy

respectively. Functiopaz_pqf_parse parses query given by strirgpuf . If parsing was successful, a
Z39.50 RPN Query is returned which is created using ODR stredfparsing failed, a NULL pointer

is returned. Functiogpaz_pgf_scan takes a scan query gbuf . If parsing was successful, the function
returns attributes plus term pointer and moditiegbuteSetld to hold attribute set for the scan
request - both allocated using ODR streantf parsing failed, yaz_pqf_scan returns a NULL pointer.
Error information for bad queries can be obtained by a caflhto pgf_error which returns an error
code and modifiesmsg to point to an error description, and modifte# to the offset within last query
were parsing failed.

The second set of functions are declared as follows:

#include <yaz/pquery.h>
Z_RPNQuery *p_query_rpn (ODR o, oid_proto proto, const char *gbuf);

Z_AttributesPlusTerm *p_query_scan (ODR o, oid_proto proto,
Odr_oid **attributeSetP, const char *qbuf);

int p_query_attset (const char *arg);
The functionp_query_rpn() takes as arguments an ODR stream (see settierODR Modulg to
provide a memory source (the structure created is released on the nextocllreset() on the

stream), a protocol identifier (one of the constants PROTO_Z3950 and PROTO_SR), an attribute set
reference, and finally a null-terminated string holding the query string.

If the parse went wellp_query rpn() returns a pointer to 2 RPNQuery structure which can be
placed directly into &_SearchRequest . If parsing failed, due to syntax error, a NULL pointer is
returned.

Thep_query_attset specifies which attribute set to use if the query doesn’t specify one by the
@attrset operator. The_query_attset returns O if the argument is a valid attribute set specifier;
otherwise the function returns -1.

The grammar of the PQF is as follows:
query ::= top-set query-struct.
top-set ::= ['@attrset’ string]
query-struct ::= attr-spec | simple | complex | '@term’ term-type
attr-spec ::='@attr’ [string] string query-struct
complex ::= operator query-struct query-struct.
operator ::="@and’ | '@or’ | '@not’ | '@prox’ proximity.
simple ::= result-set | term.

result-set ::=’@set’ string.

57

Chapter 8. Supporting Tools

term ::= string.

proximity ::= exclusion distance ordered relation which-code unit-code.
exclusion ::="1"|’0’ | 'void'.

distance ::= integer.

ordered ::="1"|'0".

relation ::= integer.

which-code ::="known’ | 'private’ | integer.

unit-code ::= integer.

term-type ::="'general’ | 'numeric’ | 'string’ | 'oid’ | 'datetime’ | 'null’.

You will note that the syntax above is a fairly faithful representation of RPN, except for the Attribute,
which has been moved a step away from the term, allowing you to associate one or more attributes with
an entire query structure. The parser will automatically apply the given attributes to each term as
required.

The @attr operator is followed by an attribute specificatmm-épec ~ above). The specification

consists of optional an attribute set, an attribute type-value pair and a sub query. The attribute type-value
pair is packed in one string: an attribute type, a dash, followed by an attribute value. The type is always
an integer but the value may be either an integer or a string (if it doesn’t start with a digit character).

Version 3 of the Z39.50 specification defines various encoding of terms@ltisen type string
where type is one ofjeneral , numeric orstring (for InternationalString). If no term type has been
given, thegeneral form is used. This is the only encoding allowed in both versions 2 and 3 of the
Z39.50 standard.

Using Proximity Operators with PQF

Note: This is an advanced topic, describing how to construct queries that make very specific
requirements on the relative location of their operands. You may wish to skip this section and go
straight to the example PQF queries.

Warning

Most Z239.50 servers do not support proximity searching, or support only
a small subset of the full functionality that can be expressed using the
PQF proximity operator. Be aware that the ability to express a query in
PQF is no guarantee that any given server will be able to execute it.

58

Chapter 8. Supporting Tools

The proximity operato@prox is a special and more restrictive version of the conjunction ope@and
Its semantics are described in section 3.7.2 (Proximity) of Z39.50 the standard itself, which can be read
on-line at http://lcweb.loc.gov/z3950/agency/markup/09.html

In PQF, the proximity operation is represented by a sequence of the form
@prox exclusion distance ordered relation which-code unit-code

in which the meanings of the parameters are as described in in the standard, and they can take the
following values:

- exclusion. 0 = false (i.e. the proximity condition specified by the remaining parameters must be
satisfied) or 1 = true (the proximity condition specified by the remaining parametersotimst
satisifed).

- distance. An integer specifying the difference between the locations of the operands: e.g. two
adjacent words would have distance=1 since their locations differ by one unit.

- ordered. 1 = ordered (the operands must occur in the order the query specifies them) or O = unordered
(they may appear in either order).

- relation. Recognised values are 1 (lessThan), 2 (lessThanOrEqual), 3 (equal), 4
(greaterThanOrEqual), 5 (greaterThan) and 6 (notEqual).

« which-code. known or k (the unit-code parameter is taken from the well-known list of alternatives
described in below) ggrivate or p (the unit-code paramater has semantics specific to an
out-of-band agreement such as a profile).

« unit-code. If the which-code parameter ksown then the recognised values are 1 (character), 2
(word), 3 (sentence), 4 (paragraph), 5 (section), 6 (chapter), 7 (document), 8 (element), 9
(subelement), 10 (elementType) and 11 (byte). If which-cogeivate then the acceptable values
are determined by the profile.

(The numeric values of the relation and well-known unit-code parameters are taken straight from the
ASN.1 (http://lcweb.loc.gov/z3950/agency/asnl.html#ProximityOperator) of the proximity structure in
the standard.)

PQF queries

Queries using simple terms.

dylan
"bob dylan"

Boolean operators.

@or "dylan" "zimmerman"
@and @or dylan zimmerman when

59

Chapter 8. Supporting Tools

@and when @or dylan zimmerman

Reference to result sets.

@set Result-1
@and @set seta setb

Attributes for terms.

@attr 1=4 computer

@attr 1=4 @attr 4=1 "self portrait"
@attr expl @attr 1=1 CategoryList
@attr gils 1=2008 Copenhagen
@attr 1=/book/title computer

Proximity.

@prox 0 3 1 2 k 2 dylan zimmerman

Note: Here the parameters 0, 3, 1, 2, k and 2 represent exclusion, distance, ordered, relation,
which-code and unit-code, in that order. So:

« exclusion = 0: the proximity condition must hold

- distance = 3: the terms must be three units apart

- ordered = 1: they must occur in the order they are specified
« relation = 2: lessThanOrEqual (to the distance of 3 units)

« which-code is “known”, so the standard unit-codes are used
« unit-code = 2: word.

So the whole proximity query means that the words dylan and zimmerman must both occur in the
record, in that order, differing in position by three or fewer words (i.e. with two or fewer words
between them.) The query would find “Bob Dylan, aka. Robert Zimmerman”, but not “Bob Dylan,
born as Robert Zimmerman” since the distance in this case is four.

Specifying term type.

@term string "a UTF-8 string, maybe?"

60

Chapter 8. Supporting Tools

Mixed queries

@or @and bob dylan @set Result-1
@attr 4=1 @and @attr 1=1 "bob dylan" @attr 1=4 "slow train coming"

@and @attr 2=4 @attr gils 1=2038 -114 @attr 2=2 @attr gils 1=2039 -109

Note: The last of these examples is a spatial search: in the GILS attribute set
(http://www.gils.net/prof_v2.html#sec_7_4), access point 2038 indicates West Bounding Coordinate
and 2030 indicates East Bounding Coordinate, so the query is for areas extending from -114
degrees to no more than -109 degrees.

CCL

Not all users enjoy typing in prefix query structures and numerical attribute values, even in a
minimalistic test client. In the library world, the more intuitive Common Command Language - CCL

(ISO 8777) has enjoyed some popularity - especially before the widespread availability of graphical
interfaces. It is still useful in applications where you for some reason or other need to provide a symbolic
language for expressing boolean query structures.

The EUROPAGATE (http://europagate.dtv.dk/) research project working under the Libraries programme
of the European Commission’s DG XlII has, amongst other useful tools, implemented a general-purpose
CCL parser which produces an output structure that can be trivially converted to the internal RPN
representation of YAZ (Th& _RPNQuery structure). Since the CCL utility - along with the rest of the
software produced by EUROPAGATE - is made freely available on a liberal license, it is included as a
supplement to YAZ.

CCL Syntax

The CCL parser obeys the following grammar for the FIND argument. The syntax is annotated by in the
lines prefixed by- .

CCL-Find ::= CCL-Find Op Elements
| Elements.

Op = "and" | "or" | "not"
-- The above means that Elements are separated by boolean operators.

Elements ::= '(CCL-Find)’
| Set
| Terms
| Qualifiers Relation Terms
| Qualifiers Relation ' CCL-Find ')’

61

Chapter 8. Supporting Tools

| Qualifiers '=" string =" string
-- Elements is either a recursive definition, a result set reference, a
-- list of terms, qualifiers followed by terms, qualifiers followed
-- by a recursive definition or qualifiers in a range (lower - upper).

Set 1= ’'set’ = string
-- Reference to a result set

Terms ::= Terms Prox Term
| Term
-- Proximity of terms.

Term ::= Term string
| string
-- This basically means that a term may include a blank

Qualifiers ::= Qualifiers ’,’ string
| string
-- Qualifiers is a list of strings separated by comma

Relation = '=" | >=" | <=’ | '<>' | > | <

-- Relational operators. This really doesn’'t follow the 1SO8777
-- standard.

Prox == "% | 'V

-- Proximity operator

Example 8-1. CCL queries

The following queries are all valid:

dylan

"bob dylan”

dylan or zimmerman
set=1

(dylan and bob) or set=1

Assuming that the qualifiets , au anddate are defined we may use:

ti=self portrait
au=(bob dylan and slow train coming)

date>1980 and (ti=((self portrait)))

62

Chapter 8. Supporting Tools

CCL Qualifiers

Qualifiers are used to direct the search to a particular searchable index, such as title (ti) and author
indexes (au). The CCL standard itself doesn'’t specify a particular set of qualifiers, but it does suggest a
few short-hand notations. You can customize the CCL parser to support a particular set of qualifiers to
reflect the current target profile. Traditionally, a qualifier would map to a particular use-attribute within
the BIB-1 attribute set. It is also possible to set other attributes, such as the structure attribute.

A CCL prdfile is a set of predefined CCL qualifiers that may be read from a file or set in the CCL API.
The YAZ client reads its CCL qualifiers from a file namdsfault.bib . There are four types of lines
in a CCL profile: qualifier specification, qualifier alias, comments and directives.

Qualifier specification
A qualifier specification is of the form:
qualifier-name [attributeset , Jtype =val [attributeset , Jtype =val

wherequalifier-name is the name of the qualifier to be used (&g), type is attribute type in the
attribute set (Bib-1 is used if no attribute set is given) gad is attribute value. Théype can be
specified as an integer or as it be specified either as a single-lefteruse,r for relationp for position,
s for structuret, for truncation orc for completeness. The attributes for the special qualifier name
are used when no CCL qualifier is given in a query.

Table 8-1. Common Bib-1 attributes

Type Description

u=value Use attribute. Common use attributes are 1 Personal-name, 4 Title, 7 ISBN, 8 ISSN,
30 Date, 62 Subject, 1003 Author), 1016 Any. Specify value as an integer.

r= value Relation attribute. Common values are 1 <, 2 <=, 3 =, 4 >=, 5>, 6 <>, 100 phonetic,
101 stem, 102 relevance, 103 always matches.

p=value Position attribute. Values: 1 first in field, 2 first in any subfield, 3 any position in ffield.

s=value Structure attribute. Values: 1 phrase, 2 word, 3 key, 4 year, 5 date, 6 word list, 100

date (un), 101 name (norm), 102 name (un), 103 structure, 104 urx, 105
free-form-text, 106 document-text, 107 local-number, 108 string, 109 numeric string.

t= value Truncation attribute. Values: 1 right, 2 left, 3 left& right, 100 none, 101 process|#,
102 regular-1, 103 regular-2, 104 CCL.
c=value Completeness attribute. Values: 1 incomplete subfield, 2 complete subfield, 3

complete field.

The complete list of Bib-1 attributes can be found here
(http://lcweb.loc.gov/z3950/agency/defns/bibl.html).

Itis also possible to specify non-numeric attribute values, which are used in combination with certain
types. The special combinations are:

Table 8-2. Special attribute combos

63

Chapter 8. Supporting Tools

Name Description

s=pw The structure is set to either word or phrase depending on the number of tokens in a
term (phrase-word).

s=al Each token in the term is ANDed. (and-list). This does not set the structure at all.

s=ol Each token in the term is ORed. (or-list). This does not set the structure at all.

r=o Allows operators greather-than, less-than, ... equals and sets relation attribute
accordingly (relation ordered).

t=I Allows term to be left-truncated. If term is of the forma, the resulting Type-1 term
is x and truncation is left.

t=r Allows term to be right-truncated. If term is of the fom®, the resulting Type-1 tefm
is x and truncation is right.

t=n If term is does not include, the truncation attribute is set to none (100).

t=b Allows term to be both left&right truncated. If term is of the fortx?, the resulting

term isx and trunctation is set to both left&right.

Example 8-2. CCL profile

Consider the following definition:

ti u=4 s=1
au u=1l s=1
term s=105
ranked r=102
date u=30 r=o0

Four qualifiers are definedi- , au, ranked anddate .

ti andau both set structure attribute to phrase (s#il)sets the use-attribute to du sets the

use-attribute to 1. When no qualifiers are used in the query the structure-attribute is set to free-form-text
(105) (rule forterm). Thedate sets the relation attribute to the relation used in the CCL query and sets
the use attribute to 30 (Bib-1 Date).

You can combine attributes. To Search for "ranked title" you can do

ti,ranked=knuth computer
which will set relation=ranked, use=title, structure=phrase.

Query

year > 1980

is a valid query, while
ti > 1980

is invalid.

64

Chapter 8. Supporting Tools

Qualifier alias
A qualifier alias is of the form:

qglqg2 ..

which declareg to be an alias foql, g2... such that the CCL quey=x is equivalent tajl=x or
w2=X or ...

Comments

Lines with white space or lines that begin with chara¢tere treated as comments.

Directives
Directive specifications takes the form

@lirective value

Table 8-3. CCL directives

Name Description Default
truncation Truncation character ?
field Specifies how multiple fields are to be combined. There are two modemerge

multiple qualifier fields are ORedherge : attributes for the qualifier fields
are merged and assigned to one term.

case Specificies if CCL operatores and qualifiers should be compared with pase
sensitivity or not. Specify O for case sensitive; 1 for case insensitive.

and Specifies token for CCL operator AND. and

or Specifies token for CCL operator OR. or

not Specifies token for CCL operator NOT. not

set Specifies token for CCL operator SET. set

CCL API

All public definitions can be found in the header filgd.h . A profile identifier is of typeCCL_bibset .
A profile must be created with the call to the functiam qual_mk which returns a profile handle of
type CCL_bibset .

To read a file containing qualifier definitions the functimh qual_file may be convenient. This
function takes an already openedlE handle pointer as argument along wit@@L_bibset handle.

To parse a simple string with a FIND query use the function

struct ccl_rpn_node *ccl_find_str (CCL_bibset bibset, const char *str,
int *error, int *pos);

65

Chapter 8. Supporting Tools

which takes the CCL profileb(bset) and query$tr) as input. Upon successful completion the RPN
tree is returned. If an error occur, such as a syntax error, the integer pointedrorby holds the error
code anchos holds the offset inside query string in which the parsing failed.

An English representation of the error may be obtained by callingdherr_msg function. The error
codes are listed iocl.h

To convert the CCL RPN tree (tym#ruct ccl_rpn_node *) to the Z_RPNQuery of YAZ the
functionccl_rpn_query must be used. This function which is part of YAZ is implemented in
yaz-ccl.c . After calling this function the CCL RPN tree is probably no longer needed. The
ccl_rpn_delete destroys the CCL RPN tree.

A CCL profile may be destroyed by calling thel_qual_rm function.

The token names for the CCL operators may be changed by setting the globals (alidype)
ccl_token_and , ccl_token_or , ccl_token_not andccl_token_set . An operator may have
aliases, i.e. there may be more than one name for the operator. To do this, separate each alias with a
space character.

CQL

CQL (http://www.loc.gov/z3950/agency/zing/cqgl/) - Common Query Language - was defined for the
SRW (http://www.loc.gov/z3950/agency/zing/srw/) protocol. In many ways CQL has a similar syntax to
CCL. The objective of CQL is different. Where CCL aims to be an end-user language, GG is

protocol query language for SRW.

Tip: If you are new to CQL, read the Gentle Introduction (http://zing.z3950.org/cgl/intro.html).

The CQL parser in YAZ provides the following:

- It parses and validates a CQL query.

It generates a C structure that allows you to convert a CQL query to some other query language, such
as SQL.

The parser converts a valid CQL query to PQF, thus providing a way to use CQL for both SRW/SRU
servers and Z39.50 targets at the same time.

« The parser converts CQL to XCQL (http://www.loc.gov/z3950/agency/zing/cql/xcql.html). XCQL is
an XML representation of CQL. XCQL is part of the SRW specification. However, since SRU
supports CQL only, we don’'t expect XCQL to be widely used. Furthermore, CQL has the advantage
over XCQL that it is easy to read.

66

Chapter 8. Supporting Tools

CQL parsing

A CQL parser is represented by ta@L_parser handle. Its contents should be considered YAZ internal
(private).

#include <yaz/cql.h>

typedef struct cql_parser *CQL_parser;

CQL_parser cql_parser_create(void);
void cql_parser_destroy(CQL_parser cp);

A parser is created bygl_parser_create and is destroyed byygl_parser_destroy

To parse a CQL query string, the following function is provided:

int cql_parser_string(CQL_parser cp, const char *str);

A CQL query is parsed by thegl_parser_string which takes a quergtr . If the query was valid
(no syntax errors), then zero is returned; otherwise -1 is returned to indicate a syntax error.

int cql_parser_stream(CQL_parser cp,
int (*getbyte)(void *client_data),
void (*ungetbyte)(int b, void *client_data),
void *client_data);

int cql_parser_stdio(CQL_parser cp, FILE *);

The functionsql_parser_stream andcql_parser_stdio parses a CQL query - just like
cql_parser_string . The only difference is that the CQL query can be fed to the parser in different
ways. Thecql_parser_stream uses a generic byte stream as input. ¢leparser_stdio uses a
FILE handle which is opened for reading.

CQL tree

The the query string is valid, the CQL parser generates a tree representing the structure of the CQL query.

struct cgl_node *cql_parser_result(CQL_parser cp);

cql_parser_result returns the a pointer to the root node of the resulting tree.

Each node in a CQL tree is represented yract cql_node . Itis defined as follows:

#define CQL_NODE_ST 1
#define CQL_NODE_BOOL 2
#define CQL_NODE_MOD 3
struct cqgl_node {

int which;

union {

67

Chapter 8. Supporting Tools

struct {
char *index;
char *term;
char *relation;
struct cgl_node *modifiers;
struct cqgl_node *prefixes;
} st
struct {
char *value;
struct cqgl_node *left;
struct cqgl_node *right;
struct cgl_node *modifiers;
struct cqgl_node *prefixes;
} boolean;
struct {
char *name;
char *value;
struct cqgl_node *next;
} mod;

by

There are three kinds of nodes, search term (ST), boolean (BOOL), and modifier (MOD).

The search term node has five members:

- index :index for search term. If an index is unspecified for a search tecwx will be NULL.
- term : the search term itself.
- relation :relation for search term.

- modifiers : relation modifiers for search term. Thedifiers is a simple linked list (NULL for
last entry). Each relation modifier node is of tyg@D

- prefixes :index prefixes for search term. Theefixes is a simple linked list (NULL for last
entry). Each prefix node is of typeOD

The boolean node represents batid, or , not as well as proximity.

- left andright :left-and right operand respectively.
« modifiers : proximity arguments.

- prefixes :index prefixes. Therefixes is a simple linked list (NULL for last entry). Each prefix
node is of typeMOD

The modifier node is a "utility" node used for name-value pairs, such as prefixes, proximity arguements,
etc.

« name name of mod node.

68

Chapter 8. Supporting Tools

. value value of mod node.

« next : pointer to next node which is always a mod node (NULL for last entry).

CQL to PQF conversion

Conversion to PQF (and Z39.50 RPN) is tricky by the fact that the resulting RPN depends on the Z239.50
target capabilities (combinations of supported attributes). In addition, the CQL and SRW operates on
index prefixes (URI or strings), whereas the RPN uses Object Identifiers for attribute sets.

The CQL library of YAZ defines aq|_transform_t type. It represents a particular mapping between
CQL and RPN. This handle is created and destroyed by the functions:

cql_transform_t cql_transform_open_FILE (FILE *f);
cql_transform_t cql_transform_open_fname(const char *fname);
void cql_transform_close(cql_transform_t ct);

The first two functions create a tranformation handle from either an already open FILE or from a
filename respectively.

The handle is destroyed layl_transform_close in which case no further reference of the handle is
allowed.

When acql_transform_t handle has been created you can convert to RPN.

int cqgl_transform_buf(cqgl_transform_t ct,
struct cgl_node *cn, char *out, int max);

This function converts the CQL trem using handlet . For the resulting PQF, you supply a buftert
which must be able to hold at at leasax characters.

If conversion failedeql_transform_buf returns a non-zero SRW error code; otherwise zero is
returned (conversion successful). The meanings of the numeric error codes are listed in the SRW
specifications at http://www.loc.gov/srw/diagnostic-list.html

If conversion fails, more information can be obtained by calling

int cqgl_transform_error(cql_transform_t ct, char **addinfop);

This function returns the most recently returned numeric error-code and sets the string-pointer at
*addinfop to point to a string containing additional information about the error that occurred: for
example, if the error code is 15 (“lllegal or unsupported index set”), the additional information is the
name of the requested index set that was not recognised.

The SRW error-codes may be translated into brief human-readable error messages using

const char *cql_strerror(int code);

69

qualifier.

relation.

Chapter 8. Supporting Tools

If you wish to be able to produce a PQF result in a different way, there are two alternatives.

void cql_transform_pr(cql_transform_t ct,
struct cqgl_node *cn,
void (*pr)(const char *buf, void *client_data),
void *client_data);

int cql_transform_FILE(cql_transform_t ct,
struct cgl_node *cn, FILE *f);

The former function produces output to a user-defined output stream. The latter writes the result to an
already operfFILE .

Specification of CQL to RPN mapping

The file supplied to functionegl_transform_open_FILE , cql_transform_open_fname follows a
structure found in many Unix utilities. It consists of mapping specifications - one per line. Lines starting
with # are ignored (comments).

Each line is of the form

CQL pattern = RPN equivalent

An RPN pattern is a simple attribute list. Each attribute pair takes the form:

[set] type =value

The attributeset is optional. Theaype is the attribute typeyalue the attribute value.

The following CQL patterns are recognized:

set . name

This pattern is invoked when a CQL qualifier, such as dc.title is conveséddandname is the
index set and qualifier name respectively. Typically, the RPN specifies an equivalent use attribute.

For terms not bound by a qualifier the pattgrralifier.srw.serverChoice is used. Here, the
prefixsrw is defined asttp://www.loc.gov/zing/cql/srw-indexes/v1.0/ . If this pattern
is not defined, the mapping will fail.

relation

This pattern specifies how a CQL relation is mapped to RRlftern is name of relation
operator. Since is used as separator between CQL pattern and RPN, CQL relations inctuding
cannot be used directly. To avoid a conflict, the nagesq, le , must be used for CQL operators,
greater-than-or-equal, equal, less-than-or-equal respectively. The RPN pattern is supposed to
include a relation attribute.

70

Chapter 8. Supporting Tools

For terms not bound by a relation, the pattestation.scr is used. If the pattern is not defined,

the mapping will fail.

The special pattermelation.* is used when no other relation pattern is matched.
relationModifier. mod

This pattern specifies how a CQL relation modifier is mapped to RPN. The RPN pattern is usually a
relation attribute.

structure. type

This pattern specifies how a CQL structure is mapped to RPN. Note that this CQL pattern is
somewhat to similar to CQL patteralation . Thetype is a CQL relation.

The patternstructure.* is used when no other structure pattern is matched. Usually, the RPN
equivalent specifies a structure attribute.

position. type
This pattern specifies how the anchor (position) of CQL is mapped to RPNyphe is one of
first ,any,last , firstAndLast

The patternposition.* is used when no other position pattern is matched.

set. prefix

This specification defines a CQL index set for a given prefix. The value on the right hand side is the
URI for the set not RPN. All prefixes used in qualifier patterns must be defined this way.

Example 8-3. CQL to RPN mapping file

This simple file defines two index sets, three qualifiers and three relations, a position pattern and a
default structure.

set.srw = http://www.loc.gov/zing/cql/srw-indexes/v1.0/
set.dc = http://www.loc.gov/zing/cgl/dc-indexes/v1.0/

qualifier.srw.serverChoice = 1=1016

qualifier.dc.title = 1=4
gualifier.dc.subject = 1=21
relation.< = 2=1
relation.eq = 2=3
relation.scr = 2=
position.any = 3=3 6=1
structure.* = 4=1

71

Chapter 8. Supporting Tools

With the mappings above, the CQL query
computer

is converted to the PQF:
@attr 1=1016 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "computer"

by rulesqualifier.srw.serverChoice , relation.scr , structure.* , position.any
CQL query
computer®
is rejected, sincposition.right is undefined.
CQL query

>my = "http://www.loc.gov/zing/cgl/dc-indexes/v1.0/" my.title = X

is converted to
@attr 1=4 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "x"

CQL to XCQL conversion

Conversion from CQL to XCQL is trivial and does not require a mapping to be defined. There three
functions to choose from depending on the way you wish to store the resulting output (XML buffer
containing XCQL).

int cql_to_xml_buf(struct cql_node *cn, char *out, int max);

void cql_to_xml(struct cqgl_node *cn,
void (*pr)(const char *buf, void *client_data),
void *client_data);

void cql_to_xml_stdio(struct cql_node *cn, FILE *f);

Functioncgl_to_xml_buf converts to XCQL and stores result in a user supplied buffer of a given max
size.

cgl_to_xml writes the result in a user defined output streean.to_xml_stdio writes to a a file.

Object Identifiers

The basic YAZ representation of an OID is an array of integers, terminated with the value -1. The ODR
module provides two utility-functions to create and copy this type of data elements:

Odr_oid *odr_getoidbystr(ODR o0, char *str);

72

Chapter 8. Supporting Tools

Creates an OID based on a string-based representation using dots (.) to separate elements in the OID.

Odr_oid *odr_oiddup(ODR odr, Odr_oid *0);

Creates a copy of the OID referenced by thgarameter. Both functions take an ODR stream as
parameter. This stream is used to allocate memory for the data elements, which is released on a
subsequent call todr_reset() on that stream.

The OID module provides a higher-level representation of the family of object identifiers which describe
the Z39.50 protocol and its related objects. The definition of the module interface is givervid.the
file.

The interface is mainly based on thident structure. The definition of this structure looks like this:

typedef struct oident

{
oid_proto proto;
oid_class oclass;
oid_value value;
int oidsuffix[OID_SIZE];
char *desc;

} oident;

The proto field takes one of the values

PROTO_Z3950
PROTO_GENERAL

UsePROTO_z3950for Z39.50 Object IdentiferROTO_GENERADTr other types (such as those
associated with ILL).

The oclass field takes one of the values

CLASS_APPCTX
CLASS_ABSYN
CLASS_ATTSET
CLASS_TRANSYN
CLASS_DIAGSET
CLASS_RECSYN
CLASS_RESFORM
CLASS_ACCFORM
CLASS_EXTSERV
CLASS_USERINFO
CLASS_ELEMSPEC
CLASS_VARSET
CLASS_SCHEMA
CLASS_TAGSET
CLASS_GENERAL

73

Chapter 8. Supporting Tools

corresponding to the OID classes defined by the 239.50 standard. Finally, the value field takes one of the
values

VAL_APDU
VAL_BER
VAL_BASIC_CTX
VAL_BIB1
VAL_EXP1
VAL_EXT1
VAL_CCL1
VAL_GILS
VAL_WAIS
VAL_STAS
VAL_DIAG1
VAL_IS02709
VAL_UNIMARC
VAL_INTERMARC
VAL_CCF
VAL_USMARC
VAL_UKMARC
VAL_NORMARC
VAL_LIBRISMARC
VAL_DANMARC
VAL_FINMARC
VAL_MAB
VAL_CANMARC
VAL_SBN
VAL_PICAMARC
VAL_AUSMARC
VAL_IBERMARC
VAL_EXPLAIN
VAL_SUTRS
VAL_OPAC
VAL_SUMMARY
VAL_GRS0
VAL_GRS1
VAL_EXTENDED
VAL_RESOURCE1
VAL_RESOURCE?2
VAL_PROMPT1
VAL_DES1
VAL_KRB1
VAL_PRESSET
VAL_PQUERY
VAL_PCQUERY
VAL_ITEMORDER
VAL_DBUPDATE
VAL_EXPORTSPEC
VAL_EXPORTINV
VAL_NONE
VAL_SETM
VAL_SETG
VAL_VAR1

74

Chapter 8. Supporting Tools

VAL_ESPEC1

again, corresponding to the specific OIDs defined by the standard. Refer to the Registry of 2Z39.50
Object Identifiers (http://Icweb.loc.gov/z3950/agency/defns/oids.html) for the whole list.

The desc field contains a brief, mnemonic name for the OID in question.

The function

struct oident *oid_getentbyoid(int *0);

takes as argument an OID, and returns a pointer to a static area contaimidgran structure. You
typically use this function when you receive a PDU containing an OID, and you wish to branch out
depending on the specific OID value.

The function

int *oid_ent_to_oid(struct oident *ent, int *dst);

Takes as argument aident structure - in which th@roto , oclass /, andvalue fields are assumed to
be set correctly - and returns a pointer to a the buffer as givetsthyontaining the base representation
of the corresponding OID. The function returns NULL and the array dst is unchanged if a mapping
couldn’t place. The arragst should be at least of sizelD_SIZE .

Theoid_ent_to_oid() function can be used whenever you need to prepare a PDU containing one or
more OIDs. The separation of theotocol element from the remainder of the OID-description makes
it simple to write applications that can communicate with either Z39.50 or OSI SR-based applications.

The function

oid_value oid_getvalbyname(const char *name);

takes as argument a mnemonic OID name, and returrnigsdive field of the first entry in the database
that contains the given name in itssc field.

Finally, the module provides the following utility functions, whose meaning should be obvious:

void oid_oidcpy(int *t, int *s);
void oid_oidcat(int *t, int *s);
int oid_oidcmp(int *ol1, int *02);
int oid_oidlen(int *o);

Note: The OID module has been criticized - and perhaps rightly so - for needlessly abstracting the
representation of OIDs. Other toolkits use a simple string-representation of OIDs with good results.
In practice, we have found the interface comfortable and quick to work with, and it is a simple matter
(for what it's worth) to create applications compatible with both ISO SR and Z39.50. Finally, the use
of the /oident ~ database is by no means mandatory. You can easily create your own system for
representing OIDs, as long as it is compatible with the low-level integer-array representation of the
ODR module.

75

Chapter 8. Supporting Tools

Nibble Memory

Sometimes when you need to allocate and construct a large, interconnected complex of structures, it can
be a bit of a pain to release the associated memory again. For the structures describing the Z39.50 PDUs
and related structures, it is convenient to use the memory-management system of the ODR subsystem
(seeUsing ODR. However, in some circumstances where you might otherwise benefit from using a
simple nibble memory management system, it may be impractical todus@alloc() and

odr_reset() . For this purpose, the memory manager which also supports the ODR streams is made
available in the NMEM module. The external interface to this module is given inrtieen.h file.

The following prototypes are given:

NMEM nmem_create(void);

void nmem_destroy(NMEM n);

void *nmem_malloc(NMEM n, int size);
void nmem_reset(NMEM n);

int nmem_tota(NMEM n);

void nmem_init(void);

void nmem_exit(void);

Thenmem_create() function returns a pointer to a memory control handle, which can be released
again bynmem_destroy() when no longer needed. The functiomem_malloc() allocates a block of
memory of the requested size. A calltmem_reset() ornmem_destroy() will release all memory
allocated on the handle since it was created (or since the last cafletd_reset() . The function
nmem_total() returns the number of bytes currently allocated on the handle.

The nibble memory pool is shared amongst threads. POSIX mutex’es and WIN32 Critical sections are
introduced to keep the module thread safe. Funatioem_init() initializes the nibble memory library
and it is called automatically the first time th@z.DLL is loaded. YAZ uses functiobllMain to

achieve this. You shouldot call nmem_init or nmem_exit unless you're absolute sure what you're
doing. Note that in previous YAZ versions you'd have to eatlem_init yourself.

76

Chapter 9. The ODR Module

Introduction

ODR is the BER-encoding/decoding subsystem of YAZ. Care as been taken to isolate ODR from the rest
of the package - specifically from the transport interface. ODR may be used in any context where basic
ASN.1/BER representations are used.

If you are only interested in writing a Z39.50 implementation based on the PDUs that are already
provided with YAZ, you only need to concern yourself with the section on managing ODR streams
(sectionUsing ODR). Only if you need to implement ASN.1 beyond that which has been provided,
should you worry about the second half of the documentation (seletimgramming with ODR If you
use one of the higher-level interfaces, you can skip this section entirely.

This is important, so we'll repeat it for emphasi&u do not need to read secti®nogramming with
ODRto implement 239.50 with YAZ.

If you need a part of the protocol that isn't already in YAZ, you should contact the authors before going
to work on it yourself: We might already be working on it. Conversely, if you implement a useful part of
the protocol before us, we'd be happy to include it in a future release.

Using ODR

ODR Streams

Conceptually, the ODR stream is the source of encoded data in the decoding mode; when encoding, it is
the receptacle for the encoded data. Before you can use an ODR stream it must be allocated. This is done
with the function

ODR odr_createmem(int direction);

Theodr_createmem() function takes as argument one of three manifest constab®R: ENCODE
ODR_DECOD®Br ODR_PRINT An ODR stream can be in only one mode - it is not possible to change its
mode once it's selected. Typically, your program will allocate at least two ODR streams - one for
decoding, and one for encoding.

When you’re done with the stream, you can use

void odr_destroy(ODR o0);

to release the resources allocated for the stream.

Memory Management

Two forms of memory management take place in the ODR system. The first one, which has to do with
allocating little bits of memory (sometimes quite large bits of memory, actually) when a protocol

77

Chapter 9. The ODR Module

package is decoded, and turned into a complex of interlinked structures. This section deals with this
system, and how you can use it for your own purposes. The next section deals with the memory
management which is required when encoding data - to make sure that a large enough buffer is available
to hold the fully encoded PDU.

The ODR module has its own memory management system, which is used whenever memory is
required. Specifically, it is used to allocate space for data when decoding incoming PDUs. You can use
the memory system for your own purposes, by using the function

void *odr_malloc(ODR o, int size);

You can't use the normdlee(2) routine to free memory allocated by this function, and ODR doesn’t
provide a parallel function. Instead, you can call

void odr_reset(ODR o, int size);

when you are done with the memory: Everything allocated since the last call teset() is
released. Thedr_reset() call is also required to clear up an error condition on a stream.

The function

int odr_total(ODR o0);

returns the number of bytes allocated on the stream since the last eail teset()

The memory subsystem of ODR is fairly efficient at allocating and releasing little bits of memory. Rather
than managing the individual, small bits of space, the system maintains a free-list of larger chunks of
memory, which are handed out in small bits. This scheme is generally knownilaisla memorgystem.

It is very useful for maintaining short-lived constructions such as protocol PDUs.

If you want to retain a bit of memory beyond the next calbto_reset() , you can use the function

ODR_MEM odr_extract_mem(ODR 0);

This function will give you control of the memory recently allocated on the ODR stream. The memory
will live (past calls toodr_reset()), until you call the function

void odr_release_mem(ODR_MEM p);

The opaqueDR_MEMandle has no other purpose than referencing the memory block for you until you
want to release it.

You can usedr_extract_mem() repeatedly between allocating data, to retain individual control of
separate chunks of data.

Encoding and Decoding Data

When encoding data, the ODR stream will write the encoded octet string in an internal buffer. To retrieve
the data, use the function

78

Chapter 9. The ODR Module

char *odr_getbuf(ODR o, int *len, int *size);

The integer pointed to by len is set to the length of the encoded data, and a pointer to that data is
returned*size is set to the size of the buffer (unlesge is null, signaling that you are not interested
in the size). The next call to a primitive function using the same ODR stream will overwrite the data,
unless a different buffer has been supplied using the call

void odr_setbuf(ODR o, char *buf, int len, int can_grow);

which sets the encoding (or decoding) buffer used by buf , using the lengtten . Before a call to an
encoding function, you can user_setbuf() to provide the stream with an encoding buffer of
sufficient size (length). Thean_grow parameter tells the encoding ODR stream whether it is allowed to
userealloc(2) to increase the size of the buffer when necessary. The default condition of a new
encoding stream is equivalent to the results of calling

odr_setbuf(stream, 0, 0, 1);

In this case, the stream will allocate and reallocate memory as necessary. The stream reallocates memory
by repeatedly doubling the size of the buffer - the result is that the buffer will typically reach its

maximum, working size with only a small number of reallocation operations. The memory is freed by

the stream when the latter is destroyed, unless it was assigned by the user with thew parameter

set to zero (in this case, you are expected to retain control of the memory yourself).

To assume full control of an encoded buffer, you must firstaaill getbuf() to fetch the buffer and its
length. Next, you should catldr_setbuf() to provide a different buffer (or a null pointer) to the

stream. In the simplest case, you will reuse the same buffer over and over again, and you will just need to
call odr_getbuf() after each encoding operation to get the length and address of the buffer. Note that
the stream may reallocate the buffer during an encoding operation, so it is necessary to retrieve the
correct address after each encoding operation.

It is important to realize that the ODR stream will not release this memory when yoetdecakset()

It will merely update its internal pointers to prepare for the encoding of a new data value. When the
stream is released by tldr_destroy() function, the memory given to it bydr_setbuf will be
releaseanly if the can_grow parameter todr_setbuf() was nonzero. Thean_grow parameter, in
other words, is a way of signaling who is to own the buffer, you or the ODR stream. If you never call
odr_setbuf() on your encoding stream, which is typically the case, the buffer allocated by the stream
will belong to the stream by default.

When you wish to decode data, you should first cafl setbuf() , to tell the decoding stream where
to find the encoded data, and how long the buffer is ¢Hre grow parameter is ignored by a decoding
stream). After this, you can call the function corresponding to the data you wish to decode (eg,
odr_integer() odrz_APDU()).

Examples of encoding/decoding functions:
int odr_integer(ODR o, int **p, int optional, const char *name);

int z APDU(ODR o, Z APDU **p, int optional, const char *name);

79

Chapter 9. The ODR Module

If the data is absent (or doesn’t match the tag corresponding to the type), the return value will be either 0
or 1 depending on theptional flag. If optional is 0 and the data is absent, an error flag will be raised

in the stream, and you'll need to calir_reset() before you can use the stream agairepional is
nonzero, the pointgrointedto/ by p will be set to the null value, and the function will return 1. Tieene
argument is used to pretty-print the tag in question. It may be $¢bta if pretty-printing is not desired.

If the data value is found where it's expected, the poiptanted toby thep argument will be set to point

to the decoded type. The space for the type will be allocated and owned by the ODR stream, and it will
live until you callodr_reset() on the stream. You cannot ufsee(2) to release the memory. You

can decode several data elements (by repeated callis teetbuf() and your decoding function), and
new memory will be allocated each time. When you do eddl reset() , everything decoded since the
last call toodr_reset() will be released.

The use of the double indirection can be a little confusing at first (its purpose will become clear later on,
hopefully), so an example is in order. We'll encode an integer value, and immediately decode it again
using a different stream. A useless, but informative operation.

void do_nothing_useful(int value)

{
ODR encode, decode;
int *valp, *resvalp;
char *bufferp;
int len;
/* allocate streams */
if (!(encode = odr_createmem(ODR_ENCODE)))
return;
if (!(decode = odr_createmem(ODR_DECODE)))
return;
valp = &value;
if (odr_integer(encode, &valp, 0, 0) == 0)
{
printf("encoding went bad\n");
return;
}
bufferp = odr_getbuf(encode, &len);
printf("length of encoded data is %d\n", len);
/* now let's decode the thing again */
odr_setbuf(decode, bufferp, len);
if (odr_integer(decode, &resvalp, 0, 0) == 0)
{
printf("decoding went bad\n");
return;
}
printf("the value is %d\n", *resvalp);
[* clean up */
odr_destroy(encode);
odr_destroy(decode);
}

80

Chapter 9. The ODR Module

This looks like a lot of work, offhand. In practice, the ODR streams will typically be allocated once, in
the beginning of your program (or at the beginning of a new network session), and the encoding and
decoding will only take place in a few, isolated places in your program, so the overhead is quite
manageable.

Diagnostics

The encoding/decoding functions all return O when an error occurs. Until yoodtateset() , you
cannot use the stream again, and any function called will immediately return O.

To provide information to the programmer or administrator, the function

void odr_perror(ODR o, char *message);

is provided, which prints thmessage argument testderr along with an error message from the stream.

You can also use the function

int odr_geterror(ODR 0);

to get the current error number from the screen. The number will be one of these constants:

Table 9-1. ODR Error codes

code Description
OMEMORY Memory allocation failed.
OSYSERR A system- or library call has failed. The standard

diagnostic variablerro should be examined to
determine the actual error.

OSPACE No more space for encoding. This will only occur
when the user has explicitly provided a buffer for an
encoding stream without allowing the system to
allocate more space.

OREQUIRED This is a common protocol error; A required data
element was missing during encoding or decoding.

OUNEXPECTED An unexpected data element was found during
decoding.

OOTHER Other error. This is typically an indication of misuse

of the ODR system by the programmer, and also
that the diagnostic system isn't as good as it should
be, yet.

The character string array

char *odr_errlist[]

81

Chapter 9. The ODR Module

can be indexed by the error code to obtain a human-readable representation of the problem.

Summary and Synopsis
#include <odr.h>
ODR odr_createmem(int direction);
void odr_destroy(ODR 0);
void odr_reset(ODR 0);
char *odr_getbuf(ODR o, int *len);
void odr_setbuf(ODR o, char *buf, int len);
void *odr_malloc(ODR o, int size);
ODR_MEM odr_extract_mem(ODR 0);
void odr_release_mem(ODR_MEM r);
int odr_geterror(ODR 0);
void odr_perror(char *message);

extern char *odr_errlist[];

Programming with ODR

The API of ODR is designed to reflect the structure of ASN.1, rather than BER itself. Future releases
may be able to represent data in other external forms.

The interface is based loosely on that of the Sun Microsystems XDR routines. Specifically, each function
which corresponds to an ASN.1 primitive type has a dual function. Depending on the settings of the

ODR stream which is supplied as a parameter, the function may be used either to encode or decode data.
The functions that can be built using these primitive functions, to represent more complex data types,
share this quality. The result is that you only have to enter the definition for a type once - and you have
the functionality of encoding, decoding (and pretty-printing) all in one unit. The resulting C source code

is quite compact, and is a pretty straightforward representation of the source ASN.1 specification.

In many cases, the model of the XDR functions works quite well in this role. In others, it is less elegant.
Most of the hassle comes from the optional SEQUENCE members which don't exist in XDR.

82

Chapter 9. The ODR Module

The Primitive ASN.1 Types

ASN.1 defines a number of primitive types (many of which correspond roughly to primitive types in
structured programming languages, such as C).

INTEGER
The ODR function for encoding or decoding (or printing) the ASN.1 INTEGER type looks like this:

int odr_integer(ODR o, int **p, int optional, const char *name);

(we don't allow values that can’t be contained in a C integer.)

This form is typical of the primitive ODR functions. They are named after the type of data that they
encode or decode. They take an ODR stream, an indirect reference to the type in question, and an
optional flag (corresponding to the OPTIONAL keyword of ASN.1) as parameters. They all return an
integer value of either one or zero. When you use the primitive functions to construct encoders for
complex types of your own, you should follow this model as well. This ensures that your new types can
be reused as elements in yet more complex types.

Theo parameter should obviously refer to a properly initialized ODR stream of the right type
(encoding/decoding/printing) for the operation that you wish to perform.

When encoding or printing, the function first lookstap . If * p (the pointer pointed to by) is a null
pointer, this is taken to mean that the data element is absent.dptioeal parameter is nonzero, the
function will return one (signifying success) without any further processing. Ibpkienal is zero, an
internal error flag is set in the ODR stream, and the function will return 0. No further operations can be
carried out on the stream without a call to the functidn reset()

If *p is not a null pointer, it is expected to point to an instance of the data type. The data will be
subjected to the encoding rules, and the result will be placed in the buffer held by the ODR stream.

The other ASN.1 primitives have similar functions that operate in similar manners:

BOOLEAN

int odr_bool(ODR o, bool_t **p, int optional, const char *name);

REAL
Not defined.

NULL

int odr_null(ODR o, bool_t **p, int optional, const char *name);

In this case, the value of **p is not important.*f is different from the null pointer, the null value is
present, otherwise it's absent.

83

Chapter 9. The ODR Module

OCTET STRING

typedef struct odr_oct

{
unsigned char *buf;
int len;
int size;

} Odr_oct;

int odr_octetstring(ODR o, Odr_oct **p, int optional,
const char *name);

Thebuf field should point to the character array that holds the octetstringlehhéeld holds the actual
length, while thesize field gives the size of the allocated array (not of interest to you, in most cases).
The character array need not be null terminated.

To make things a little easier, an alternative is given for string types that are not expected to contain
embedded NULL characters (eg. VisibleString):

int odr_cstring(ODR o, char **p, int optional, const char *name);

Which encoded or decodes between OCTETSTRING representations and null-terminates C strings.

Functions are provided for the derived string types, eg:

int odr_visiblestring(ODR o, char **p, int optional,
const char *name);

BIT STRING

int odr_bitstring(ODR o, Odr_bitmask **p, int optional,
const char *name);

The opaque typ@dr_bitmask is only suitable for holding relatively brief bit strings, eg. for options
fields, etc. The consta@DR_BITMASK_SIZEmultiplied by 8 gives the maximum possible number of
bits.

A set of macros are provided for manipulating ther_bitmask type:
void ODR_MASK_ZERO(Odr_bitmask *b);

void ODR_MASK_SET(Odr_bitmask *b, int bitno);

void ODR_MASK_CLEAR(Odr_bitmask *b, int bitno);

int ODR_MASK_GET(Odr_bitmask *b, int bitno);

84

Chapter 9. The ODR Module

The functions are modeled after the manipulation functions that accompafuy ee type used by the
select(2) call. ODR_MASK_ZERshould always be called first on a new bitmask, to initialize the bits to
zero.

OBJECT IDENTIFIER

int odr_oid(ODR o, Odr_oid **p, int optional, const char *name);

The C OID representation is simply an array of integers, terminated by the value Qdfthed type is
synonymous with theat type). We suggest that you use the OID database module (see s@bjemt
Identifierg to handle object identifiers in your application.

Tagging Primitive Types
The simplest way of tagging a type is to use tle _implicit_tag() or odr_explicit_tag()
macros:

int odr_implicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

int odr_explicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

To create a type derived from the integer type by implicit tagging, you might write:

Mylnt ::= [210] IMPLICIT INTEGER

In the ODR system, this would be written like:

int myInt(ODR o, int **p, int optional, const char *name)

{
return odr_implicit_tag(o, odr_integer, p,
ODR_CONTEXT, 210, optional, name);

The functionmyint() can then be used like any of the primitive functions provided by ODR. Note that
the behavior obdr_explicit_tag() andodr_implicit_tag() macros act exactly the same as the
functions they are applied to - they respond to error conditions, etc, in the same manner - they simply
have three extra parameters. The class parameter may take one of the@BRESONTEXT
ODR_PRIVATEODR_UNIVERSALOr /ODR_APPLICATION.

85

Chapter 9. The ODR Module

Constructed Types

Constructed types are created by combining primitive types. The ODR system only implements the
SEQUENCE and SEQUENCE OF constructions (although adding the rest of the container types should
be simple enough, if the need arises).

For implementing SEQUENCES, the functions

int odr_sequence_begin(ODR o, void *p, int size, const char *name);
int odr_sequence_end(ODR 0);

are provided.

Theodr_sequence_begin() function should be called in the beginning of a function that implements
a SEQUENCE type. Its parameters are the ODR stream, a pointer (to a pointer to the type you're
implementing), and thsize of the type (typically a C structure). On encoding, it returns*L if is a

null pointer. Thesize parameter is ignored. On decoding, it returns 1 if the type is found in the data
streamsize bytes of memory are allocated, afyd is set to point to this spacedr_sequence_end()

is called at the end of the complex function. Assume that a type is defined like this:

MySequence ::= SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

The corresponding ODR encoder/decoder function and the associated data structures could be written
like this:

typedef struct MySequence
{

int *intval;

bool_t *boolval;
} MySequence;

int mySequence(ODR o, MySequence **p, int optional, const char *name)

{
if (odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);
return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval’) &&
odr_sequence_end(0);
}

Note the 1 in the call todr_bool() , to mark that the sequence member is optional. If either of the
member types had been tagged, the mastdosSmplicit_tag() or odr_explicit_tag() could

have been used. The new function can be used exactly like the standard functions provided with ODR. It
will encode, decode or pretty-print a data value of thySequence type. We like to name types with an

initial capital, as done in ASN.1 definitions, and to name the corresponding function with the first

86

Chapter 9. The ODR Module

character of the name in lower case. You could, of course, name your structures, types, and functions any
way you please - as long as you're consistent, and your code is easily readialdeé. is just that - a

predicate that returns the state of the stream. It is used to ensure that the behavior of the new type is
compatible with the interface of the primitive types.

Tagging Constructed Types

Note: See section Tagging Primitive types for information on how to tag the primitive types, as well
as types that are already defined.

Implicit Tagging

Assume the type above had been defined as

MySequence ::= [10] IMPLICIT SEQUENCE ({
intval INTEGER,
boolval BOOLEAN OPTIONAL

You would implement this in ODR by calling the function

int odr_implicit_settag(ODR o, int class, int tag);

which overrides the tag of the type immediately following it. The maho implicit_tag() works
by callingodr_implicit_settag() immediately before calling the function pointer argument. Your
type function could look like this:

int mySequence(ODR o, MySequence **p, int optional, const char *name)

{

if (odr_implicit_settag(o, ODR_CONTEXT, 10) == 0 ||
odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);

return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(0);

The definition of the structurglySequence would be the same.

Explicit Tagging

Explicit tagging of constructed types is a little more complicated, since you are in effect adding a level of
construction to the data.

Assume the definition:

87

Chapter 9. The ODR Module

MySequence ::= [10] IMPLICIT SEQUENCE ({
intval INTEGER,
boolval BOOLEAN OPTIONAL

Since the new type has an extra level of construction, two new functions are needed to encapsulate the
base type:

int odr_constructed_begin(ODR o, void *p, int class, int tag,
const char *name);

int odr_constructed_end(ODR 0);

Assume that the IMPLICIT in the type definition above were replaced with EXPLICIT (or that the
IMPLICIT keyword were simply deleted, which would be equivalent). The structure definition would
look the same, but the function would look like this:

int mySequence(ODR o, MySequence **p, int optional, const char *name)

{
if (odr_constructed_begin(o, p, ODR_CONTEXT, 10, name) == 0)
return optional && odr_ok(o);
if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p));
if (odr_sequence_begin(o, p, sizeof(**p), 0) == 0)
{
p = 0; / this is almost certainly a protocol error */
return O;
}
return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval') &&
odr_sequence_end(0) &&
odr_constructed_end(0);
}

Notice that the interface here gets kind of nasty. The reason is simple: Explicitly tagged, constructed
types are fairly rare in the protocols that we care about, so the esthetic annoyance (not to mention the
dangers of a cluttered interface) is less than the time that would be required to develop a better interface.
Nevertheless, it is far from satisfying, and it's a point that will be worked on in the future. One option for
you would be to simply apply thedr_explicit_tag() macro to the first function, and not have to

worry aboutodr_constructed_* yourself. Incidentally, as you might have guessed, the

odr_sequence_ functions are themselves implemented using/éde constructed functions.

SEQUENCE OF

To handle sequences (arrays) of a specific type, the function

int odr_sequence_of(ODR o, int (*fun)(ODR o, void *p, int optional),

88

Chapter 9. The ODR Module
void *p, int *num, const char *name);

Thefun parameter is a pointer to the decoder/encoder function of thefyipe pointer to an array of
pointers to your typenumis the number of elements in the array.

Assume a type

MyArray ::= SEQUENCE OF INTEGER

The C representation might be

typedef struct MyArray

{
int num_elements;
int **elements;

} MyArray;

And the function might look like

int myArray(ODR o, MyArray **p, int optional, const char *name)

{

if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p));

if (odr_sequence_of(o, odr_integer, &(*p)->elements,
&(*p)->num_elements, name))
return 1;

*p = 0'
return optional && odr_ok(o);

CHOICE Types

The choice type is used fairly often in some ASN.1 definitions, so some work has gone into streamlining
its interface.

CHOICE types are handled by the function:

int odr_choice(ODR o, Odr_arm arm[], void *p, void *whichp,
const char *name);

Thearm array is used to describe each of the possible types that the CHOICE type may assume.
Internally in your application, the CHOICE type is represented as a discriminated union. Thatis,a C
union accompanied by an integer (or enum) identifying the active 'arm’ of the uwldchp is a

pointer to the union discriminator. When encoding, it is examined to determine the current type. When
decoding, it is set to reference the type that was found in the input stream.

The Odr_arm type is defined thus:

89

Chapter 9. The ODR Module

typedef struct odr_arm
{
int tagmode;
int class;
int tag;
int which;
Odr_fun fun;
char *name;
} Odr_arm;

The interpretation of the fields are:

tagmode
EitherODR_IMPLICIT, ODR_EXPLICIT, or ODR_NONE1) to mark no tagging.

which
The value of the discriminator that corresponds to this CHOICE element. Typically, it will be a
#defined constant, or an enum member.

fun
A pointer to a function that implements the type of the CHOICE member. It may be either a
standard ODR type or a type defined by yourself.

name

Name of tag.

A handy way to prepare the array for use by tide choice() function is to define it as a static,
initialized array in the beginning of your decoding/encoding function. Assume the type definition:

MyChoice ::= CHOICE {
untagged INTEGER,
tagged [99] IMPLICIT INTEGER,
other BOOLEAN

Your C type might look like

typedef struct MyChoice
{
enum
{
MyChoice_untagged,
MyChoice_tagged,
MyChoice_other
} which;
union
{
int *untagged;
int *tagged;

90

Chapter 9. The ODR Module

bool_t *other;

by

And your function could look like this:

int myChoice(ODR o0, MyChoice **p, int optional, const char *name)

{

static Odr_arm arm[] =

{
{-1, -1, -1, MyChoice_untagged, odr_integer, "untagged"},
{ODR_IMPLICIT, ODR_CONTEXT, 99, MyChoice_tagged, odr_integer,
“tagged"},
{-1, -1, -1, MyChoice_other, odr_boolean, "other"},
{1, -1, -1, -1, 0}

h

if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p);
else if (I*p)
return optional && odr_ok(o);

if (odr_choice(o, arm, &(*p)->u, &(*p)->which), name)
return 1;

*p = 0;
return optional && odr_ok(o);

In some cases (say, a hon-optional choice which is a member of a sequence), you can "embed" the union
and its discriminator in the structure belonging to the enclosing type, and you won't need to fiddle with
memory allocation to create a separate structure to wrap the discriminator and union.

The corresponding function is somewhat nicer in the Sun XDR interface. Most of the complexity of this
interface comes from the possibility of declaring sequence elements (including CHOICES) optional.

The ASN.1 specifications naturally requires that each member of a CHOICE have a distinct tag, so they
can be told apart on decoding. Sometimes it can be useful to define a CHOICE that has multiple types
that share the same tag. You'll need some other mechanism, perhaps keyed to the context of the CHOICE
type. In effect, we would like to introduce a level of context-sensitiveness to our ASN.1 specification.
When encoding an internal representation, we have no problem, as long as each CHOICE member has a
distinct discriminator value. For decoding, we need a way to tell the choice function to look for a specific
arm of the table. The function

void odr_choice_bias(ODR o, int what);

provides this functionality. When called, it leaves a notice for the next calitachoice() to be
called on the decoding streastthat only thearm entry with awhich field equal tovhat should be tried.

91

Chapter 9. The ODR Module

The most important application (perhaps the only one, really) is in the definition of application-specific
EXTERNAL encoders/decoders which will automatically decode an ANY member given the direct or
indirect reference.

Debugging

The protocol modules are suffering somewhat from a lack of diagnostic tools at the moment. Specifically
ways to pretty-print PDUs that aren’t recognized by the system. We'll include something to this end in a
not-too-distant release. In the meantime, what we do when we get packages we don't understand is to
compile the ODR module wit®DR_DEBU@efined. This causes the module to dump tracing information

as it processes data units. With this output and the protocol specification (239.50), it is generally fairly
easy to see what goes wrong.

92

Chapter 10. The COMSTACK Module

Synopsis (blocking mode)

COMSTACK stack;

char *buf = 0;

int size = 0, length_incoming;

char *protocol_package;

int protocol_package_length;

char server_address_str[] = "myserver.com:2100";
void *server_address_ip;

int status;

stack = cs_create(tcpip_type, 1, PROTO_Z3950);

if (Istack) {
perror("cs_create"); /* use perror() here since we have no stack yet */
exit(1);

}

server_address_ip = cs_addrstr (stack, server_address_str);

status = cs_connect(stack, server_address_ip);
if (status != 0) {

cs_perror(stack, "cs_connect");

exit(1);
}

status = cs_put(stack, protocol_package, protocol_package length);
if (status) {

cs_perror(stack, "cs_put");

exit(1);
}

/* Now get a response */

length_incoming = cs_get(stack, &buf, &size);
if (!length_incoming) {
fprintf(stderr, "Connection closed\n");
exit(1);
} else if (length_incoming < 0) {
cs_perror(stack, "cs_get");
exit(1);
}

/* Do stuff with buf here */

[* clean up */

cs_close(stack);

if (buf)
free(buf);

93

Chapter 10. The COMSTACK Module

Introduction

The COMSTACK subsystem provides a transparent interface to different types of transport stacks for the
exchange of BER-encoded data and HTTP packets. At present, the RFC1729 method (BER over
TCP/IP), local UNIX socket and an experimental SSL stack are supported, but others may be added in
time. The philosophy of the module is to provide a simple interface by hiding unused options and
facilities of the underlying libraries. This is always done at the risk of losing generality, and it may prove
that the interface will need extension later on.

Note: There hasn’t been interest in the XTImOSI stack for some years. Therefore, it is no longer
supported.

The interface is implemented in such a fashion that only the sub-layers constructed to the transport
methods that you wish to use in your application are linked in.

You will note that even though simplicity was a goal in the design, the interface is still orders of
magnitudes more complex than the transport systems found in many other packages. One reason is that
the interface needs to support the somewhat different requirements of the different lower-layer
communications stacks; another important reason is that the interface seeks to provide a more or less
industrial-strength approach to asynchronous event-handling. When no function is allowed to block,
things get more complex - particularly on the server side. We urge you to have a look at the
demonstration client and server provided with the package. They are meant to be easily readable and
instructive, while still being at least moderately useful.

Common Functions

Managing Endpoints

COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);

Creates an instance of the protocol stack - a communications endpoinyp&hg@arameter determines
the mode of communication. At present the following values are supported:

tcpip_type
TCP/IP (BER over TCP/IP or HTTP over TCP/IP)

ssl_type

Secure Socket Layer (SSL). This COMSTACK is experimental and is not fully implemented. If
HTTP is used, this effectively is HTTPS.

94

Chapter 10. The COMSTACK Module

unix_type
Unix socket (unix only). Local Transfer via file socket. See unix(7).

Thecs_create function returns a null-pointer if a system error occurs. bloeking parameter
should be one if you wish the association to operate in blocking mode, zero otherwiggoibhel
field should bePROTO_Z39500r PROTO_HTTPProtocolPROTO_SHs no longer supported.

int cs_close(COMSTACK handle);

Closes the connection (as elegantly as the lower layers will permit), and releases the resources pointed to
by thehandle parameter. Theandle should not be referenced again after this call.

Note: We really need a soft disconnect, don’t we?

Data Exchange

int cs_put(COMSTACK handle, char *buf, int len);

Sendsuf down the wire. In blocking mode, this function will return only when a full buffer has been
written, or an error has occurred. In nonblocking mode, it's possible that the function will be unable to
send the full buffer at once, which will be indicated by a return value of 1. The function will keep track
of the number of octets already written; you should call it repeatedly with the same valugs ahd

len , until the buffer has been transmitted. When a full buffer has been sent, the function will return O for
success. -1 indicates an error condition (see below).

int cs_get(COMSTACK handle, char **buf, int *size);

Receives a PDU or HTTP Response from the peer. Returns the number of bytes read. In nonblocking
mode, it is possible that not all of the packet can be read at once. In this case, the function returns 1. To
simplify the interface, the function is responsible for managing the size of the buffer. It will be

reallocated if necessary to contain large packages, and will sometimes be moved around internally by the
subsystem when partial packages are read. Before callingt for the fist time, the buffer can be

initialized to the null pointer, and the length should also be set to 0 - cs_get will perforaica(2)

on the buffer for you. When a full buffer has been read, the size of the package is returned (which will
always be greater than 1). -1 indicates an error condition.

See also thes_more() function below.

int cs_more(COMSTACK handle);

Thecs_more() function should be used in conjunction with get andselect(2) . Thecs_get()

function will sometimes (notably in the TCP/IP mode) read more than a single protocol package off the
network. When this happens, the extra package is stored by the subsystem. Aftercsallizt) , and
before waiting for more input, You should always aall more() to check if there’s a full protocol

95

Chapter 10. The COMSTACK Module

package already read.d§_more() returns 1cs_get() can be used to immediately fetch the new
package. For the mOSI subsystem, the function should always return 0, but if you want your stuff to be
protocol independent, you should use it.

Note: The cs_more() function is required because the RFC1729-method does not provide a way of
separating individual PDUs, short of partially decoding the BER. Some other implementations will
carefully nibble at the packet by calling read(2) several times. This was felt to be too inefficient (or at
least clumsy) - hence the call for this extra function.

int cs_look(COMSTACK handle);

This function is useful when you're operating in nonblocking mode. Call it wdegett(2) tells you
there’s something happening on the line. It returns one of the following values:

CS_NONE
No event is pending. The data found on the line was not a complete package.
CS_CONNECT
A response to your connect request has been receivedc<Calliconnect to process the event
and to finalize the connection establishment.
CS_DISCON
The other side has closed the connection (or maybe sent a disconnect request - but do we care?
Maybe later). Calts_close to close your end of the association as well.
CS_LISTEN
A connect request has been received. Callisten to process the event.
CS_DATA

There’s data to be found on the line. Cadl get to get it.

Note: You should be aware that even if cs_look() tells you that there’s an event event pending, the
corresponding function may still return and tell you there was nothing to be found. This means that
only part of a package was available for reading. The same event will show up again, when more
data has arrived.

int cs_fileno(COMSTACK h);

Returns the file descriptor of the association. Use this when file-level operations on the endpoint are
required éelect(2) operations, specifically).

96

Chapter 10. The COMSTACK Module

Client Side

int cs_connect(COMSTACK handle, void *address);

Initiate a connection with the targetaddress (more on addresses below). The function will return 0
on success, and 1 if the operation does not complete immediately (this will only happen on a
nonblocking endpoint). In this case, usercvconnect to complete the operation, whealect(2)
orpoll(2) reports input pending on the association.

int ¢cs_rcvconnect(COMSTACK handle);

Complete a connect operation initiateddsy connect() . It will return 0 on success; 1 if the operation
has not yet completed (in this case, call the function again later); -1 if an error has occurred.

Server Side

To establish a server under the inetd server, you can use

COMSTACK cs_createbysocket(int socket, CS_TYPE type, int blocking,
int protocol);

Thesocket parameter is an established socket (when your application is invoked from inetd, the socket
will typically be 0. The following parameters are identical to the ones$ocreate

int cs_bind(COMSTACK handle, void *address, int mode)

Binds a local address to the endpoint. Read about addresses belawoddiparameter should be either
CS_CLIENT or CS_SERVER

int cs_listen(COMSTACK handle, char *addr, int *addrlen);

Call this to process incoming events on an endpoint that has been bound in listening mode. It will return
0 to indicate that the connect request has been received, 1 to signal a partial reception, and -1 to indicate
an error condition.

COMSTACK cs_accept(COMSTACK handle);

This finalizes the server-side association establishment, after cs_listen has completed successfully. It
returns a new connection endpoint, which represents the new association. The application will typically
wish to fork off a process to handle the association at this point, and continue listen for new connections
on the oldhandle .

You can use the call

char *cs_addrstr(COMSTACK);

97

Chapter 10. The COMSTACK Module

on an established connection to retrieve the host-name of the remote host.

Note: You may need to use this function with some care if your name server service is slow or
unreliable

Addresses

The low-level format of the addresses are different depending on the mode of communication you have
chosen. A function is provided by each of the lower layers to map a user-friendly string-form address to
the binary form required by the lower layers.

void *cs_straddr(COMSTACK handle, const char *str);

The format for TCP/IP and SSL addresses is:

<host> ["’ <portnum>]

Thehostname can be either a domain name or an IP address. The port number, if omitted, defaults to
210.

For TCP/IP and SSL transport modes, the special hostname "@" is mapped to any local address (the
manifest constariNADDR_ANY. It is used to establish local listening endpoints in the server role.

For UNIX sockets, the format of an address is the socket filename.

When a connection has been established, you can use

char *cs_addrstr(COMSTACK h);

to retrieve the host name of the peer system. The function returns a pointer to a static area, which is
overwritten on the next call to the function.

A fairly recent addition to the COMSTACK module is the utility function

COMSTACK cs_create_host (const char *str, int blocking, void **vp);

which is just a wrapper foes_create andcs_straddr . Thestr is similar to that described for
cs_straddr but with a prefix denoting the COMSTACK type. Prefixes supportedcare , unix: and
ssl: for TCP/IP, UNIX and SSL respectively. If no prefix is given, then TCP/IP is used. The
blocking is passed to functiocs_create . The third parameterp is a pointer to COMSTACK stack
type specific values. For SSL (ssl_typg) is an already create OpenSSL CTX. For TCP/IP and UNIX
vp is unused (can be set MULL

98

Chapter 10. The COMSTACK Module

Diagnostics

All functions return -1 if an error occurs. Typically, the functions will return 0 on success, but the data
exchange functions$_get , cs_put , cs_more) follow special rules. Consult their descriptions.

When a function (including the data exchange functions) reports an error condition, use the function
cs_ermo() to determine the cause of the problem. The function

void cs_perror(COMSTACK handle char *message);

works likeperror(2) and prints thenessage argument, along with a system messageatderr . Use
the character array

extern const char *cs_errlist[];

to get hold of the message, if you want to process it differently. The function

const char *cs_stackerr(COMSTACK handle);

Returns an error message from the lower layer, if one has been provided.

Summary and Synopsis

#include <yaz/comstack.h>
#include <yaz/tcpip.h> [* this is for TCP/IP and SSL support */
#include <yaz/unix.h> /* this is for UNIX sockeL support */
COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);
COMSTACK cs_createbysocket(int s, CS_TYPE type, int blocking,
int protocol);
COMSTACK cs_create_host (const char *str, int blocking,
void **vp);
int cs_bind(COMSTACK handle, int mode);
int cs_connect(COMSTACK handle, void *address);
int cs_rcvconnect(COMSTACK handle);
int cs_listen(COMSTACK handle);
COMSTACK cs_accept(COMSTACK handle);

int cs_put(COMSTACK handle, char *buf, int len);

int cs_get(COMSTACK handle, char **buf, int *size);

99

Chapter 10. The COMSTACK Module

int cs_more(COMSTACK handle);

int cs_close(COMSTACK handle);

int cs_look(COMSTACK handle);

void *cs_straddr(COMSTACK handle, const char *str);
char *cs_addrstr(COMSTACK h);

extern int cs_errno;

void cs_perror(COMSTACK handle char *message);
const char *cs_stackerr(COMSTACK handle);

extern const char *cs_errlist[];

100

Chapter 11. Future Directions

We have a new and better version of the front-end server on the drawing board. Resources and external
commitments will govern when we’ll be able to do something real with it. Features should include
greater flexibility, greater support for access/resource control, and easy support for Explain (possibly
with Zebra as an extra database engine).

YAZ is a BER toolkit and as such should support all protocols out there based on that. We'd like to see
running ILL applications. It shouldn’t be that hard. Another thing that would be interesting is LDAP.
Maybe a generic framework for doing IR using both LDAP and Z39.50 transparently.

The SOAP implementation is incomplete. In the future we hope to add more features to it. Perhaps make
a WSDL/XML Schema compiler. The authors of libxml2 are already working on XML Schema /
RelagNG compilers so this may not be too hard.

It would be neat to have a proper module mechanism for the Generic Frontend Server so that backend
would be dynamically loaded (as shared objects / DLLS).

Other than that, YAZ generally moves in the directions which appear to make the most people happy
(including ourselves, as prime users of the software). If there’s something you'd like to see in here, then
drop us a note and let’s see what we can come up with.

101

Appendix A. License

Index Data Copyright
Copyright © 1995-2003 Index Data ApS.

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in
part, for any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation.
Notices of copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of Index Data or the individual authors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS I1S" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL INDEX DATA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER

RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Additional Copyright Statements

The optional CCL query language interpreter is covered by the following license:

Copyright © 1995, the EUROPAGATE consortium (see below).

The EUROPAGATE consortium members are:
University College Dublin

Danmarks Teknologiske Videnscenter

An Chomhairle Leabharlanna

Consejo Superior de Investigaciones Cientificas

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in
part, for any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation.
Notices of copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of EUROPAGATE or the project partners may not be used to endorse or promote products
derived from this software without specific prior written permission.

3. Users of this software (implementors and gateway operators) agree to inform the EUROPAGATE
consortium of their use of the software. This information will be used to evaluate the EUROPAGATE
project and the software, and to plan further developments. The consortium may use the information in
later publications.

102

Appendix A. License

4. Users of this software agree to make their best efforts, when documenting their use of the software, to
acknowledge the EUROPAGATE consortium, and the role played by the software in their work.

THIS SOFTWARE IS PROVIDED "AS I1S" AND WITHOUT WARRANTY OF ANY KIND,
EXPRESS, IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL THE EUROPAGATE CONSORTIUM OR ITS MEMBERS BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF

LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

103

Appendix B. About Index Data

Index Data is a consulting and software-development enterprise that specializes in library and
information management systems. Our interests and expertise span a broad range of related fields, and
one of our primary, long-term objectives is the development of a powerful information management
system with open network interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the
networking community, and to further the development of quality software for open network
communication.

We'll be happy to answer questions about the software, and about ourselves in general.

Index Data Aps
Kgbmagergade 43

1150 Copenhagen K
Denmark

Phone +45 3341 0100

Fax +45 3341 0101

Email <info@indexdata.dk >

The Hacker's Jargon File has the following to say about the use of the prefix "YA" in the name of a
software product.
[Yet Another. adj. 1. Of your own work: A humorous allusion often used in titles to acknowledge that

the topic is not original, though the content is. As in "Yet Another Al Group" or "Yet Another Simulated
Annealing Algorithm". 2. Of others’ work: Describes something of which there are already far too many.

]

104

Appendix C. Credits

This appendix lists individuals that have contributed in the development of YAZ. Some have contributed
with code, while others have provided bug fixes or suggestions. If we're missing somebody, of if you, for
whatever reason, don't like to be listed here, let us know.

 Dimitrios Andreadis
« Morten Bggeskov

+ Rocco Carbone

- Matthew Carey

« Irina Dijour

« Hans van Dalen

« Hans van den Dool

« Franck Falcoz

« Kevin Gamiel

+ Morten Garkier Hendriksen
« Morten Holmqvist

+ lan Ibbotson

« Shigeru Ishida

- David Johnson

« Oleg Kolobov

« Kang-Jin Lee

« Pieter Van Lierop

+ Stefan Lohrum

« Ronald van der Meer
« Thomas W. Place

« Peter Popovics

» Jacob Chr. Poulsen
« Ko van der Sloot

« Mike Taylor

+ Rustam T. Usmanov
+ Charles Woodfield

. Tom André @verland

105

